【題目】已知函數(shù).

1)若為銳角,, ,求的值;

2)函數(shù),若對(duì)任意都有恒成立,求實(shí)數(shù)的最大值;

3)已知,求的值.

【答案】1;(2;(3

【解析】

1)根據(jù)同角三角函數(shù)的關(guān)系和二倍角的余弦公式可求得的值,利用二倍角的正切公式、同角三角函數(shù)的基本關(guān)系以及兩角差的正切公式可求解的值;
2)由余弦函數(shù)的有界性求得的值域,再將不等式分離參數(shù),并令,可得對(duì)恒成立.易知函數(shù)單調(diào)遞增,求出其最小值,則可得,從而求得的最大值;
3)利用和差化積公式(需證明)以及二倍角公式,將該式化簡(jiǎn),配湊成,再結(jié)合,即可求出的值.

解:(1,且為銳角,

,,

,

,為銳角,

,

;

2

對(duì)任意恒成立,

對(duì)任意恒成立,

對(duì)恒成立,

函數(shù)單調(diào)遞增,

當(dāng)時(shí),,

,則的最大值為;

3,

,

,

,

,

,

,

,,

.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方體的棱長(zhǎng)為2,分別為棱、上的點(diǎn),且與頂點(diǎn)不重合.

1)若直線相交于點(diǎn),求證:、三點(diǎn)共線;

2)若分別為、的中點(diǎn).

(ⅰ)求證:幾何體為棱臺(tái);

(ⅱ)求棱臺(tái)的體積.

(附:棱臺(tái)的體積公式,其中、分別為棱臺(tái)上下底面積,為棱臺(tái)的高)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在長(zhǎng)方形中, , ,現(xiàn)將沿折起,使折到的位置且在面的射影恰好在線段上.

(Ⅰ)證明:

(Ⅱ)求銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】()(2017·開封二模)為備戰(zhàn)某次運(yùn)動(dòng)會(huì),某市體育局組建了一個(gè)由4個(gè)男運(yùn)動(dòng)員和2個(gè)女運(yùn)動(dòng)員組成的6人代表隊(duì)并進(jìn)行備戰(zhàn)訓(xùn)練.

(1)經(jīng)過備戰(zhàn)訓(xùn)練,從6人中隨機(jī)選出2人進(jìn)行成果檢驗(yàn),求選出的2人中至少有1個(gè)女運(yùn)動(dòng)員的概率.

(2)檢驗(yàn)結(jié)束后,甲、乙兩名運(yùn)動(dòng)員的成績(jī)用莖葉圖表示如圖:

計(jì)算說明哪位運(yùn)動(dòng)員的成績(jī)更穩(wěn)定.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示的多面體中,四邊形ABCD為菱形,,ABCD,,異面直線AFCD所成角的余弦值為

求證:面EDB;

求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校某班在一次數(shù)學(xué)測(cè)驗(yàn)中,全班N名學(xué)生的數(shù)學(xué)成績(jī)的頻率分布直方圖如下,已知分?jǐn)?shù)在110~120的學(xué)生有14人.

(1)求總?cè)藬?shù)N和分?jǐn)?shù)在120~125的人數(shù)n;

(2)利用頻率分布直方圖,估算該班學(xué)生數(shù)學(xué)成績(jī)的眾數(shù)和中位數(shù)各是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線lx2y20.

1)求直線l1yx2關(guān)于直線l對(duì)稱的直線l2的方程;

2)求直線l關(guān)于點(diǎn)A(1,1)對(duì)稱的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】中國(guó)明代商人程大位對(duì)文學(xué)和數(shù)學(xué)也頗感興趣,他于60歲時(shí)完成杰作直指算法統(tǒng)宗,這是一本風(fēng)行東亞的數(shù)學(xué)名著,該書第五卷有問題云:“今有白米一百八十石,令三人從上及和減率分之,只云甲多丙米三十六石,問:各該若干?”翻譯成現(xiàn)代文就是:“今有百米一百八十石,甲乙丙三個(gè)人來分,他們分得的米數(shù)構(gòu)成等差數(shù)列,只知道甲比丙多分三十六石,那么三人各分得多少米?”請(qǐng)你計(jì)算甲應(yīng)該分得  

A. 78 B. 76 C. 75 D. 74

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直角梯形中, , , 平面 , , 的中點(diǎn)為

)求證:

)求證:平面平面

)當(dāng)為何值時(shí),能使?請(qǐng)給出證明.

查看答案和解析>>

同步練習(xí)冊(cè)答案