在(
1
x
-x26的展開(kāi)式中,常數(shù)是( 。
A、20B、15C、-20D、-1
考點(diǎn):二項(xiàng)式系數(shù)的性質(zhì)
專(zhuān)題:二項(xiàng)式定理
分析:在二項(xiàng)展開(kāi)式的通項(xiàng)公式中,令x的冪指數(shù)等于0,求出r的值,即可求得常數(shù)項(xiàng).
解答: 解:∵(
1
x
-x26的展開(kāi)式的通項(xiàng)公式為T(mén)r+1=
C
r
6
•(-1)r•x3r-6,令3r-6=0,求得r=2,
可得常數(shù)項(xiàng)為
C
2
6
=15,
故選:B.
點(diǎn)評(píng):本題主要考查二項(xiàng)式定理的應(yīng)用,二項(xiàng)式系數(shù)的性質(zhì),二項(xiàng)式展開(kāi)式的通項(xiàng)公式,求展開(kāi)式中某項(xiàng)的系數(shù),屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

圓ρ=
2
(cosθ+sinθ)的圓心坐標(biāo)是( 。
A、(
1
2
π
4
B、(1,
π
4
C、(
2
,
π
4
D、(2,
π
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=x+lg
x
2-x

(1)求定義域;
(2)求f(x)+f(2-x)的值;
(3)猜想f(x)的圖象具有怎樣的對(duì)稱(chēng)性,并證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x3-(a+b)x2+abx,這里0<a<b.
(Ⅰ)設(shè)f(x)在x=s與x=t處取得極值,其中s<t,求證:0<s<a<t<b;
(Ⅱ)設(shè)點(diǎn)A(s,f(s)),B(t,f(t)),求證:線段AB的中點(diǎn)C在曲線y=f(x)上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

4張卡片上分別寫(xiě)有數(shù)字1,2,3,4,從這4張卡片中隨機(jī)抽取2張,則取出的2張卡片上的數(shù)字之和為奇數(shù)的概率為( 。
A、
1
3
B、
1
2
C、
2
3
D、
3
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在復(fù)平面內(nèi),復(fù)數(shù)1+i與2i分別對(duì)應(yīng)向量
OA
和,其中O為坐標(biāo)原點(diǎn),則向量
AB
所對(duì)應(yīng)的復(fù)數(shù)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)的導(dǎo)函數(shù)f′(x)=ax2+bx+c的圖象如圖,則f(x)的圖象可能是( 。
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}為等差數(shù)列,若am=a,an=b(n-m≥1,m,n∈N*),則a1=
(m-1)b-(n-1)a
m-n
.類(lèi)比上述結(jié)論,對(duì)于等比數(shù)列{bn}(bn>0,n∈N*),若bm=c,bn=d(n-m≥2,m,n∈N*),則可以得到b1=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=mx-
m-1
x
(m∈R),函數(shù)g(x)=
α
x
+2lnx(α≠0,α∈R)在[
1
2
,+∞]上為增函數(shù).
(1)求α取值范圍;
(2)當(dāng)α最大時(shí),如果m≥1,x≥1,求證:f(x)≥g(x);
(3)當(dāng)α=1時(shí),設(shè)h(x)=
2e
x
,若在[1,e]上至少存在一個(gè)x0,使得得f(x0)-g(x0)>h(x0)成立,求m的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案