精英家教網 > 高中數學 > 題目詳情
已知函數的圖象與的圖象關于直線對稱。
(Ⅰ)若直線的圖像相切, 求實數的值;
(Ⅱ)判斷曲線與曲線公共點的個數.
(Ⅲ)設,比較的大小, 并說明理由.
(Ⅰ)(Ⅱ)唯一公共點(Ⅲ)
(Ⅰ) 由題意知. ……………1分,設直線相切與點 !……………4分
(Ⅱ)證明曲線與曲線有唯一公共點,過程如下。

,

∴曲線與曲線只有唯一公共點.……………8分
(Ⅲ) 解法一:∵
……………9分

,且
,∴
 ……………14分
解法二:……………9分
為主元,并將其視為,構造函數,則
,且……………10分
,∴上單調遞增,
∴當,∴上單調遞增,
∴當時,……………10分
 ……………14分
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:解答題

設函數
(1)求的單調區(qū)間;
(2)當時,若方程上有兩個實數解,求實數的取值范圍;
(3)證明:當時,

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知函數
(1)求曲線y=f(x)在(2,f(2))處的切線方程;
(2)若g(x)=f(x)一有兩個不同的極值點.其極小值為M,試比較2M與一3的大小,并說明理由;
(3)設q>p>2,求證:當x∈(p,q)時,.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知.
(1)求函數的最大值;
(2)設,證明:有最大值,且.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知函數
(1)求的最小值;
(2)當函數自變量的取值區(qū)間與對應函數值的取值區(qū)間相同時,這樣的區(qū)間稱為函數的保值區(qū)間.設,試問函數上是否存在保值區(qū)間?若存在,請求出一個保值區(qū)間;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知函數f(x)=ax+x2-xlna(a>0,a≠1).
(1)當a>1時,求證:函數f(x)在(0,+∞)上單調遞增;
(2)若函數y=|f(x)-t|-1有三個零點,求t的值;
(3)若存在x1、x2∈[-1,1],使得|f(x1)-f(x2)|≥e-1,試求a的取值范圍.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知函數處取得極小值.
(1)若函數的極小值是,求;
(2)若函數的極小值不小于,問:是否存在實數,使得函數上單調遞減?若存在,求出的范圍;若不存在,說明理由.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知函數
(Ⅰ)當在區(qū)間上的最大值和最小值;
(Ⅱ)若在區(qū)間上,函數的圖象恒在直線下方,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

已知函數f(x)的導函數為f′(x),且滿足f(x)=2xf′(1)+lnx,則f′(1)等于(  )
A.-eB.-1C.1D.e

查看答案和解析>>

同步練習冊答案