函數(shù)y=
1+cos2x
sin2x
的周期是
 
考點:三角函數(shù)的周期性及其求法,二倍角的正弦,二倍角的余弦
專題:三角函數(shù)的求值
分析:直接利用二倍角公式化簡函數(shù)的表達(dá)式,然后利用周期公式求解就.
解答: 解:函數(shù)y=
1+cos2x
sin2x
=
1+2cos2x-1
2sinxcosx
=
1
tanx

所以函數(shù)的周期為:π.
故答案為:π.
點評:本題考查三角函數(shù)的化簡求值,三角函數(shù)的周期的求法,基本知識的考查.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

某單位安排2013年春節(jié)期間7天假期的值班情況,7個員工每人各值一天.已知某員工甲必須排在前兩天,員工乙不能排在第一天,員工丙必須排在最后一天,則不同的值班順序有( 。
A、120種B、216種
C、720種D、540種

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知sinα=-
3
5
,且α是第四象限角,則tanα的值為(  )
A、-
4
3
B、-
3
4
C、
4
3
D、
3
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合M={y|y=2x,x≥0},N={x|y=lg(2x-x2)},則M∩N=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知Sn是數(shù)列{an}的前n項和,其通項公式為an=-n2+13n-12,則Sn取得最大值時的n的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知焦點在x軸上的橢圓C的短軸長為2,離心率為
3
2

(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)如圖所示,A1,A2,B1,B2是橢圓C的頂點,E是橢圓上任意一點(頂點除外)B1E交x軸于點P,直線A2B1交A1E于點G,設(shè)直線A1E的斜率為k1,直線GP的斜率為k2,證明k1-2k2為定值,并求出這個定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

正方形ABCD的邊長為1,E、F分別為BC、CD的中點,沿AE、EF、AF折成四面體則四面體PAEF使B、C、D三點重合于P,則P到面AEF的距離為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知過點P(6,8)做兩條互相垂直的直線PA、PB,分別交x軸正半軸于A,交y軸正半軸于B,若S△AOB=S△APB,求PA與PB所在直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點P在定圓O的圓內(nèi)或圓周上,動圓C過點P與定圓O相切,則動圓C的圓心軌跡可能是(  )
A、圓或橢圓成雙曲線
B、兩條射線或圓或拋物線
C、兩條射線或圓或橢圓
D、橢圓或雙曲線或拋物線

查看答案和解析>>

同步練習(xí)冊答案