(1)設(shè),求的值;
(2)已知,且,求的值.

(1);(2).

解析試題分析:(1)將所求式分子1換成,然后分子分母同除以,將其轉(zhuǎn)化為關(guān)于的式子再進(jìn)行計(jì)算即可,本題若由,去求出,則需要討論,若想不到用代替1,則可原式分子分母同除以,然后再考慮求出,顯然這兩種方法較為麻煩;(2)此類(lèi)給三角函數(shù)值求三角函數(shù)值的問(wèn)題一般是通過(guò)考察條件中的角和問(wèn)題中的角的關(guān)系,然后通過(guò)誘導(dǎo)公式、同角三角函數(shù)關(guān)系式、和差角公式進(jìn)行計(jì)算.注意到,由誘導(dǎo)公式知,結(jié)合條件由同角三角函數(shù)關(guān)系式可求出,注意公式使用時(shí)要考察角的范圍從而確定三角函數(shù)值的符號(hào).
試題解析:(1)原式=            3分
                7分
(2)由,得,
       10分

所以                      14分
考點(diǎn):同角三角函數(shù)的關(guān)系、三角函數(shù)的誘導(dǎo)公式.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)向量,.(1)若,求的值;
(2)設(shè)函數(shù),求的最大、最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù).
(1)若函數(shù)的圖像關(guān)于直線(xiàn)對(duì)稱(chēng),求的最小值;
(2)若存在,使成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖所示,一個(gè)半圓和長(zhǎng)方形組成的鐵皮,長(zhǎng)方形的邊為半圓的直徑,為半圓的圓心,,,現(xiàn)要將此鐵皮剪出一個(gè)等腰三角形,其底邊.

(1)設(shè),求三角形鐵皮的面積;
(2)求剪下的鐵皮三角形的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

中,角所對(duì)的邊分別為且滿(mǎn)足.
(I)求角的大。
(II)求的最大值,并求取得最大值時(shí)角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

某同學(xué)在一次研究性學(xué)習(xí)中發(fā)現(xiàn),以下五個(gè)式子的值都等于同一個(gè)常數(shù).

;
;

.
(1)從上述五個(gè)式子中選擇一個(gè),求出常數(shù);
(2)根據(jù)(1)的計(jì)算結(jié)果,將該同學(xué)的發(fā)現(xiàn)推廣為一個(gè)三角恒等式,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù),.求:
(I)求函數(shù)的最小正周期和單調(diào)遞增區(qū)間;
(II)求函數(shù)在區(qū)間上的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù),
(1)求函數(shù)的最大值和最小值;
(2)設(shè)函數(shù)上的圖象與軸的交點(diǎn)從左到右分別為,圖象的最高點(diǎn)為,
的夾角的余弦.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知向量,,,設(shè)函數(shù).
(1)求函數(shù)的最大值;
(2)在中,角為銳角,角、、的對(duì)邊分別為、,且的面積為3,,求的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案