A. | sin(2πx-$\frac{π}{2}$) | B. | sin($\frac{π}{2}$x-$\frac{π}{2}$) | C. | sin(πx-$\frac{π}{2}$) | D. | sin(πx+$\frac{π}{2}$) |
分析 利用導(dǎo)數(shù)研究函數(shù)f(x)的最值,畫出f(x),g(x)的圖象,利用f(x)與g(x)的圖象有兩個(gè)公共點(diǎn),建立條件關(guān)系,結(jié)合周期公式和最值點(diǎn),即可得到結(jié)論.
解答 解:f(x)定義域?yàn)閤≠0,
①當(dāng)x>0時(shí),f(x)=x2-2ln|x|=x2-2lnx,
f'(x)=2x-$\frac{2}{x}$,
令f'(x)=0,解得x=1,
由f'(x)<0,則0<x<1,
由f'(x)>0,則x>1,
則當(dāng)x=1時(shí),f(x)取的最小值,最小值為f(1)=1;
②當(dāng)x<0時(shí),f(x)=x2-2ln|x|=x2+2lnx,
則f'(x)=2x+$\frac{2}{x}$,
令f'(x)=0,解得x=-1,
由f'(x)<0,則x<-1,
由f'(x)>0,則-1<x<0,
則當(dāng)x=-1時(shí),函數(shù)f(x)取最小值,最小值為f(-1)=1.
綜合①②所述:f(x)的最小值為f(-1)=f(1)=1,
∵只有2個(gè)公共點(diǎn),
∴g(x)最大值為1.
則最長周期為|(-1)-1|=2,即T=$\frac{2π}{ω}$=2,即ω=π,
則g(1)=sin(π+φ)=1,
即π+φ=2kπ+$\frac{π}{2}$,即φ=2kπ-$\frac{π}{2}$,k∈Z.
則周期最大的g(x)=sin(πx+2kπ-$\frac{π}{2}$)=sin(πx-$\frac{π}{2}$),k∈Z,
故選:C.
點(diǎn)評 本題主要考查函數(shù)圖象的應(yīng)用,根據(jù)導(dǎo)數(shù)研究函數(shù)的最值是解決本題的關(guān)鍵,綜合性較強(qiáng),屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 4$\sqrt{3}$ | B. | 5 | C. | 3$\sqrt{3}$ | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 20+2π | B. | 20+π | C. | 20-2π | D. | 20-π |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{2π}{3}$+$\frac{1}{6}$ | B. | $\frac{π}{3}$+$\frac{1}{3}$ | C. | $\frac{π}{3}$+$\frac{1}{6}$ | D. | $\frac{\sqrt{2}π}{6}$+$\frac{1}{6}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | a>b>c | B. | b>a>c | C. | a>c>b | D. | c>a>b |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com