【題目】函數(shù)f(x)= ln(1﹣x)的定義域是( )
A.(﹣1,1)
B.[﹣1,1)
C.[﹣1,1]
D.(﹣1,1]
【答案】B
【解析】解:要使函數(shù)f(x)有意義,則 ,
即 ,
∴﹣1≤x<1,
即函數(shù)的定義域為[﹣1,1).
故選:B.
【考點(diǎn)精析】掌握函數(shù)的定義域及其求法和對數(shù)函數(shù)的定義域是解答本題的根本,需要知道求函數(shù)的定義域時,一般遵循以下原則:①是整式時,定義域是全體實數(shù);②是分式函數(shù)時,定義域是使分母不為零的一切實數(shù);③是偶次根式時,定義域是使被開方式為非負(fù)值時的實數(shù)的集合;④對數(shù)函數(shù)的真數(shù)大于零,當(dāng)對數(shù)或指數(shù)函數(shù)的底數(shù)中含變量時,底數(shù)須大于零且不等于1,零(負(fù))指數(shù)冪的底數(shù)不能為零;對數(shù)函數(shù)的定義域范圍:(0,+∞).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知:函數(shù)f(x)對一切實數(shù)x,y都有f(x+y)﹣f(y)=x(x+2y+1)成立,且f(1)=0.
(1)求f(0)的值.
(2)求f(x)的解析式.
(3)已知a∈R,設(shè)P:當(dāng)0<x< 時,不等式f(x)+3<2x+a恒成立;Q:當(dāng)x∈[﹣2,2]時,g(x)=f(x)﹣ax是單調(diào)函數(shù).如果滿足P成立的a的集合記為A,滿足Q成立的a的集合記為B,求A∩RB(R為全集).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某旅游愛好者計劃從3個亞洲國家A1,A2,A3和3個歐洲國家B1,B2,B3中選擇2個國家去旅游.
(1)若從這6個國家中任選2個,求這2個國家都是亞洲國家的概率;
(2)若從亞洲國家和歐洲國家中各選1個,求這兩個國家包括A1,但不包括B1的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】三名工人加工同一種零件,他們在一天中的工作情況如圖所示,其中點(diǎn)Ai的橫、縱坐標(biāo)分別為第i名工人上午的工作時間和加工的學(xué)科&網(wǎng)零件數(shù),點(diǎn)Bi的橫、縱坐標(biāo)分別為第i名工人下午的工作時間和加工的零件數(shù),i=1,2,3.
①記Qi為第i名工人在這一天中加工的零件總數(shù),則Q1,Q2,Q3中最大的是_________.
②記pi為第i名工人在這一天中平均每小時加工的零件數(shù),則p1,p2,p3中最大的是_________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】醫(yī)學(xué)上某種還沒有完全攻克的疾病,治療時需要通過藥物控制其中的兩項指標(biāo)和.現(xiàn)有三種不同配方的藥劑,根據(jù)分析,三種藥劑能控制指標(biāo)的概率分別為0.5,0.6,0.75,能控制指標(biāo)的概率分別是0.6,0.5,0.4,能否控制指標(biāo)與能否控制指標(biāo)之間相互沒有影響.
(Ⅰ)求三種藥劑中恰有一種能控制指標(biāo)的概率;
(Ⅱ)某種藥劑能使兩項指標(biāo)和都得到控制就說該藥劑有治療效果.求三種藥劑中有治療效果的藥劑種數(shù)的分布列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對于函數(shù)f(x)定義域中任意的x1 , x2(x1≠x2),有如下結(jié)論:
(1)f(x1+x2)=f(x1)f(x2)
(2)f(x1x2)=f(x1)+f(x2)
(3)
當(dāng)f(x)=ex時,上述結(jié)論中正確結(jié)論的序號是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=ln(x+1),g(x)=kx(k∈R).
(1)證明:當(dāng)x>0時,f(x)<x;
(2)證明:當(dāng)k<1時,存在x0>0,使得對任意的x∈(0,x0),恒有f(x)>g(x).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面幾何中有如下結(jié)論:正三角形ABC的內(nèi)切圓面積為S1 , 外接圓面積為S2 , 則 ,推廣到空間可以得到類似結(jié)論;已知正四面體P﹣ABC的內(nèi)切球體積為V1 , 外接球體積為V2 , 則 = .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f(x)=a(x-lnx)+,a∈R.
(I)討論f(x)的單調(diào)性;
(II)當(dāng)a=1時,證明f(x)>f’(x)+對于任意的x∈[1,2] 恒成立。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com