精英家教網 > 高中數學 > 題目詳情
13、從0,1,2,3,4,5六個數字中每次取3個不同的數字,可以組成
52
個無重復數字的3位偶數.
分析:由題意欲組成無重復數字的3位偶數則每次取的三個數至少有一個是偶數,因為共有三個偶數,故可按偶數的個數分為三類,有一個偶數,有二個偶數,有三個偶數,分別計數最后相加得到個數
解答:解:由題意,若取出的三個數中僅有一個偶數,則此偶數必在個位,故所有的三個數的個數為C31×A32=18
若有兩個偶數,可分為兩類,其中之一為0時,若為在個位,則所組成的三位無重復數字的個數是C21×C31×A22=12個,若0不在個位,則0必在十位,所組成的三位無重復數字的個數是C21×C31=6,
若兩個偶數都不是0時,則所組成的三位無重復數字的個數是C31×A21×A22=12
若有三個偶數時,則先排首位,有A21種排法,十位與個位的排法有A22,故總的排法有2×2=4種
綜上,所組成的三位無重復數字的偶數的個數是18+12+6+12+4=52
故答案為52
點評:本題考查排列、組合及簡單計數問題,解題的關鍵是理解“無重復數字的3位偶數”,注意到偶數在個位這一特征及偶數0不在首位這一特征,然后進行分類計數,本題分類較多,易因為考慮不全少計一類,解題時要思維要嚴謹,莫因為漏掉一類導致解題失。
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

7、從0,1,2,3,4,5,6,7,8,9十個數字中,選出一個偶數和三個奇數,組成一個沒有重復數字的四位數,這樣的四位數共有( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

17、從0,1,2,3,4,5這六個數字組成的無重復數字的自然數,
求:(1)有多少個含有2,3,但它們不相鄰的五位數?
(2)有多少個數字1,2,3必須由大到小順序排列的六位數?

查看答案和解析>>

科目:高中數學 來源: 題型:

從0、1、2、3、4五個數字中任取4個,可組成沒有重復數字的四位數的個數為(  )

查看答案和解析>>

科目:高中數學 來源: 題型:

從0、1、2、3、4這五個數字中任取四個,可構成無重復數字且1、2不相鄰的四位數有( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

從0,1,2,3,4,5,6中任取3個數字組成沒有重復數字的3位數,基中能被5整除的數共有(  )

查看答案和解析>>

同步練習冊答案