13.若復數(shù)z滿足(1+i)•z=2i(i為虛數(shù)單位),則復數(shù)z=1+i.

分析 由(1+i)•z=2i,得$z=\frac{2i}{1+i}$,再利用復數(shù)代數(shù)形式的乘除運算化簡得答案.

解答 解:由(1+i)•z=2i,
得$z=\frac{2i}{1+i}$=$\frac{2i(1-i)}{(1+i)(1-i)}=1+i$.
故答案為:1+i.

點評 本題考查了復數(shù)代數(shù)形式的乘除運算,考查了復數(shù)的基本概念,是基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

3.已知橢圓$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的短軸長為4,焦距為2.
(1)求C的方程;
(2)過橢圓C的左焦點F1作傾斜角為45°的直線l,直線l與橢圓相交于A、B兩點,求AB的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.命題“?x∈R,2x+x2≤1”的否定是( 。
A.?x∈R,2x+x2>1B.?x∈R,2x+x2≥1C.?x∈R,2x+x2>1D.?x∈R,2x+x2≥1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0),若過其右焦點F作傾斜角為45°的直線l與雙曲線右支有兩個不同的交點,則雙曲線的離心率的范圍是(1,$\sqrt{2}$).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.在復平面內,復數(shù)2-i(i是虛數(shù)單位)的共軛復數(shù)對應的點位于( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.為了了解某校學生喜歡吃辣是否與性別有關,隨機對此校100人進行調查,得到如下的列表:已知在全部100人中隨機抽取1人抽到喜歡吃辣的學生的概率為$\frac{3}{5}$.
喜歡吃辣不喜歡吃辣合計
男生401050
女生203050
合計6040100
(1)請將上面的列表補充完整;
(2)是否有99.9%以上的把握認為喜歡吃辣與性別有關?說明理由:
下面的臨界值表供參考:
p(K2≥k)0.100.050.0250.0100.0050.001
k2.7063.8415.0246.6357.87910.828
(參考公式:${K^2}=\frac{{n•{{({ad-bc})}^2}}}{{({a+b})({c+d})({a+c})({b+d})}}$,其中n=a+b+c+d)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.在等比數(shù)列{an}中,a1,a10是方程3x2+7x-9=0的兩根,則a4a7=-3.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.已知函數(shù)f(x)對一切實數(shù)x,y∈R都有f(x+y)-f(y)=x(x+2y+1)成立,且f(1)=0.
(1)求f(0)的值;
(2)求f(x)的解析式;
(3)當x∈[-2,2]時,g(x)=f(x)-ax是單調函數(shù),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.已知函數(shù)f(x)=$\frac{7x+5}{x+1}$,數(shù)列{an}滿足:2an+1-2an+an+1an=0且an≠0.數(shù)列{bn}中,b1=f(0)且bn=f(an-1).
(1)求數(shù)列{an}的通項公式;   
(2)求數(shù)列{anan+1}的前n項和Sn;
(3)求數(shù)列{|bn|}的前n項和Tn

查看答案和解析>>

同步練習冊答案