已知函數(shù)y=x+有如下性質(zhì):如果常數(shù)a>0,那么該函數(shù)在(0,]上是減函數(shù),在[,+∞)上是增函數(shù).

(1)如果函數(shù)y=x+(x>0)的值域?yàn)椋?,+∞),求b的值;

(2)研究函數(shù)y=x2+(常數(shù)c>0)在定義域內(nèi)的單調(diào)性,并說明理由;

(3)對函數(shù)y=x+和y=x2+(常數(shù)a>0)作出推廣,使它們都是你所推廣的函數(shù)的特例,研究推廣后的函數(shù)的單調(diào)性(只須寫出結(jié)論,不必證明),并求函數(shù)f(x)=(x2+)n+(+x)n(n是正整數(shù))在區(qū)間[,2]上的最大值和最小值(可利用你的研究結(jié)論).

解析:(1)函數(shù)y=x+(x>0)在(0,]上是減函數(shù),在[,+∞)上是增函數(shù),

∴該函數(shù)在x=處取得最小值2.

    令2=6得b=log29.

(2)方法1:設(shè)t=x2≥0,顯然函數(shù)y=t+在(0,]上是減函數(shù),在[,+∞)上是增函數(shù).

    令x2,得-≤x≤,

    令x2,得x≥或x≤-.

    又∵t=x2在(-∞,0]上是減函數(shù),在[0,+∞)上是增函數(shù),

    于是利用復(fù)合函數(shù)的單調(diào)性知,函數(shù)y=x2+,在(-∞,-]上是減函數(shù),在[-,0)上是增函數(shù),在(0,]上是減函數(shù),[,+∞)上是增函數(shù).

方法2:∵y′=2x-=2x-,

    令y′=0則x=±,又∴x≠0,

    于是

x

(-∞,-)

-

(-,0)

0

(0,)

(,+∞)

f′(x)

-

0

+

 

-

0

+

f(x)

極小值

 

極大值

∴y=x2+(c>0)的單調(diào)增區(qū)間是[-,0),[,+∞);

    單調(diào)遞減區(qū)間是(-∞,-],(0,].

(3)推廣結(jié)論:當(dāng)n是正奇數(shù)時(shí),函數(shù)y=xn+(常數(shù)a>0)是奇函數(shù),故在(-∞,-]上是增函數(shù),在[-,0)上是減函數(shù),

    在(0,]上是減函數(shù),在[,+∞)上是增函數(shù).

    而當(dāng)n是正偶數(shù)時(shí),函數(shù)y=xn+(常數(shù)a>0)是偶函數(shù),

    在(-∞,-]上是減函數(shù),在[-,0)上是增函數(shù),

    在(0,]上是減函數(shù),在[,+∞)上是增函數(shù).

    當(dāng)x=1時(shí),有最小值(1的任意次冪都是1),

∴F(x)min=F(1)=(1+1)n+(1+1)n=2n+1,

F(x)max=F()=F(2)=()n+()n=9n[()n+()2n].


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2012•武昌區(qū)模擬)已知點(diǎn)P在半徑為1的半圓周上沿著A→P→B路徑運(yùn)動,設(shè)弧   的長度為x,弓形面積為f(x)(如圖所示的陰影部分),則關(guān)于函數(shù)y=f(x)的有如下結(jié)論:
①函數(shù)y=f(x)的定義域和值域都是[0,π];
②如果函數(shù)y=f(x)的定義域R,則函數(shù)y=f(x)是周期函數(shù);
③如果函數(shù)y=f(x)的定義域R,則函數(shù)y=f(x)是奇函數(shù);
④函數(shù)y=f(x)在區(qū)間[0,π]是單調(diào)遞增函數(shù).
以上結(jié)論的正確個(gè)數(shù)是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:湖北省武漢市武昌區(qū)2012屆高三5月調(diào)研考試數(shù)學(xué)文科試題 題型:013

已知點(diǎn)P在半徑為1的半圓周上沿著A→P→B路徑運(yùn)動,設(shè)弧的長度為x,弓形面積為f(x)(如圖所示的陰影部分),則關(guān)于函數(shù)y=f(x)的有如下結(jié)論:

①函數(shù)y=f(x)的定義域和值域都是[0,π];

②如果函數(shù)y=f(x)的定義域R,則函數(shù)y=f(x)是周期函數(shù);

③如果函數(shù)y=f(x)的定義域R,則函數(shù)y=f(x)是奇函數(shù);

④函數(shù)y=f(x)在區(qū)間[0,π]上是單調(diào)遞增函數(shù).

以上結(jié)論的正確個(gè)數(shù)是

[  ]

A.1

B.2

C.3

D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

已知點(diǎn)P在半徑為1的半圓周上沿著A→P→B路徑運(yùn)動,設(shè)弧  的長度為x,弓形面積為f(x)(如圖所示的陰影部分),則關(guān)于函數(shù)y=f(x)的有如下結(jié)論:
①函數(shù)y=f(x)的定義域和值域都是[0,π];
②如果函數(shù)y=f(x)的定義域R,則函數(shù)y=f(x)是周期函數(shù);
③如果函數(shù)y=f(x)的定義域R,則函數(shù)y=f(x)是奇函數(shù);
④函數(shù)y=f(x)在區(qū)間[0,π]是單調(diào)遞增函數(shù).
以上結(jié)論的正確個(gè)數(shù)是


  1. A.
    1
  2. B.
    2
  3. C.
    3
  4. D.
    4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012年湖北省武漢市武昌區(qū)高三五月調(diào)考數(shù)學(xué)試卷(文科)(解析版) 題型:選擇題

已知點(diǎn)P在半徑為1的半圓周上沿著A→P→B路徑運(yùn)動,設(shè)弧   的長度為x,弓形面積為f(x)(如圖所示的陰影部分),則關(guān)于函數(shù)y=f(x)的有如下結(jié)論:
①函數(shù)y=f(x)的定義域和值域都是[0,π];
②如果函數(shù)y=f(x)的定義域R,則函數(shù)y=f(x)是周期函數(shù);
③如果函數(shù)y=f(x)的定義域R,則函數(shù)y=f(x)是奇函數(shù);
④函數(shù)y=f(x)在區(qū)間[0,π]是單調(diào)遞增函數(shù).
以上結(jié)論的正確個(gè)數(shù)是( )

A.1
B.2
C.3
D.4

查看答案和解析>>

同步練習(xí)冊答案