【題目】已知函數(shù)的定義域為,若存在區(qū)間,使得稱區(qū)間為函數(shù)的“和諧區(qū)間”.
(1)請直接寫出函數(shù)的所有的“和諧區(qū)間”;
(2)若為函數(shù)的一個“和諧區(qū)間”,求的值;
(3)求函數(shù)的所有的“和諧區(qū)間”.
【答案】(1)函數(shù)的所有“和諧區(qū)間”為;(2)2;
(3)的所有“和諧區(qū)間”為和
【解析】
(1)根據(jù)三次函數(shù)的圖像與“和諧區(qū)間”的定義觀察寫出即可.
(2)畫圖分析的圖像性質即可.
(3)畫出圖像,并根據(jù)“和諧區(qū)間”的定義利用函數(shù)分析即可.
(1)函數(shù)的定義域為R,由題意令則,
∴函數(shù)的所有“和諧區(qū)間”為;
(2) 為函數(shù)的一個“和諧區(qū)間”,
令,解得,
畫出圖形,如圖(1)所示,
由題意知時滿足題意,
∴m的值為2;
(3)函數(shù),定義域為R,
令,解得,
畫出函數(shù)f(x)的圖象如圖(2)所示,
則f(x)的所有“和諧區(qū)間”為和 .
科目:高中數(shù)學 來源: 題型:
【題目】如圖,是邊長為的正方形,是的中點,點沿著路徑在正方形邊上運動所經過的路程為,的面積為.
(1)求的解析式及定義域;
(2)求面積的最大值及此時點位置.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知雙曲線x2-=1.
(1)若一橢圓與該雙曲線共焦點,且有一交點P(2,3),求橢圓方程.
(2)設(1)中橢圓的左、右頂點分別為A、B,右焦點為F,直線l為橢圓的右準線,N為l上的一動點,且在x軸上方,直線AN與橢圓交于點M.若AM=MN,求∠AMB的余弦值;
(3)設過A、F、N三點的圓與y軸交于P、Q兩點,當線段PQ的中點為(0,9)時,求這個圓的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知,分別是雙曲線的左頂點、右焦點,過的直線與的一條漸近線垂直且與另一條漸近線和軸分別交于,兩點.若,則的離心率是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標平面中, 的兩個頂點為,平面內兩點、同時滿足:①;②;③.
(1)求頂點的軌跡的方程;
(2)過點作兩條互相垂直的直線,直線與點的軌跡相交弦分別為,設弦的中點分別為.
①求四邊形的面積的最小值;
②試問:直線是否恒過一個定點?若過定點,請求出該定點,若不過定點,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某公司生產一種化工產品,該產品若以每噸10萬元的價格銷售,每年可售出1000噸,若將該產品每噸分價格上漲,則每年的銷售數(shù)量將減少,其中m為正常數(shù),銷售的總金額為y萬元.
(1)當時,該產品每噸的價格上漲百分之幾,可使銷售總金額最大?
(2)當時,若能使銷售總金額比漲價前增加,試設定m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù)是偶函數(shù).
(1)求不等式的解集;
(2)若不等式對任意實數(shù)成立,求實數(shù)的取值范圍;
(3)設函數(shù),若在上有零點,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設關于x的方程2x2﹣ax﹣2=0的兩根分別為α、β(α<β),函數(shù)
(1)證明f(x)在區(qū)間(α,β)上是增函數(shù);
(2)當a為何值時,f(x)在區(qū)間[α,β]上的最大值與最小值之差最。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某研究機構為了了解各年齡層對高考改革方案的關注程度,隨機選取了200名年齡在內的市民進行了調查,并將結果繪制成如圖所示的頻率分布直方圖(分第一~五組區(qū)間分別為,,,,,).
(1)求選取的市民年齡在內的人數(shù);
(2)若從第3,4組用分層抽樣的方法選取5名市民進行座談,再從中選取2人在座談會中作重點發(fā)言,求作重點發(fā)言的市民中至少有一人的年齡在內的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com