下列幾個命題:
①方程x2+(a-3)x+a=0的有一個正解,一個負實根,則a<0;
②若f(x)的定義域為[0,1],則f(x+2)的定義域為[-2,1];
③函數(shù)y=log2(x+1)+2的圖象可由y=log2(x-1)-2的圖象向上平移4個單位,向右平移2個單位得到;
④若關(guān)于x的方程式|x2-2x-3|=m有兩解,則m=0或m>4,其中正確的有
①④
①④
(填序號)
分析:①方程x2+(a-3)x+a=0的有一個正解,一個負實根,則
(a-3)2-4a>0
a<0
,可得a<0;
②f(x)的定義域為[0,1],則0≤x+2≤1,屬于f(x+2)的定義域為[-2,-1];
③函數(shù)y=log2(x+1)+2的圖象可由y=log2(x-1)-2的圖象向上平移4個單位,向左平移2個單位得到;
④畫出函數(shù)y=|x2-2x-3|與y=m的圖象,根據(jù)圖象可得結(jié)論.
解答:解:①方程x2+(a-3)x+a=0的有一個正解,一個負實根,則
(a-3)2-4a>0
a<0
,∴a<0,故正確;
②∵f(x)的定義域為[0,1],∴0≤x+2≤1,∴-2≤x≤-1,∴f(x+2)的定義域為[-2,-1],故不正確;
③函數(shù)y=log2(x+1)+2的圖象可由y=log2(x-1)-2的圖象向上平移4個單位,向左平移2個單位得到,故不正確;
④畫出函數(shù)y=|x2-2x-3|與y=m的圖象,方程有兩解,則m=0或m>4,故正確
故正確的有:①④
點評:本題考查方程的根,考查函數(shù)的定義域,考查圖象變換,考查數(shù)形結(jié)合的數(shù)學(xué)思想,綜合性強.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

下列幾個命題:
①方程x2+(a-3)x+a=0的有一個正實根,一個負實根,則a<0;
 ②若f(x)的定義域為[0,1],則f(x+2)的定義域為[-2,-1];
③函數(shù)y=log2(-x+1)+2的圖象可由y=log2(-x-1)-2的圖象向上平移4個單位,向左平移2個單位得到;
④若關(guān)于x方程|x2-2x-3|=m有兩解,則m=0或m>4.
⑤若函數(shù)f(2x+1)是偶函數(shù),則f(2x)的圖象關(guān)于直線x=
12
對稱.
其中正確的有
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列幾個命題:
①方程x2+(a-3)x+a=0有一個正實根,一個負實根,則a<0;
②函數(shù)y=
x2-1
+
1-x2
是偶函數(shù),但不是奇函數(shù);
③曲線y=|3-x2|和直線y=a(a∈R)的公共點個數(shù)是m,則m的值不可能是1.
其中正確的有
 
.(填序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列幾個命題
①若方程x2+(a-3)x+a=0有一個正實根,一個負實根,則a<0.
②函數(shù)y=
x2-1
+
1-x2
是偶函數(shù),但不是奇函數(shù).
③函數(shù)f(x)的值域是[-2,2],則函數(shù)f(x+1)的值域為[-3,1].
④函數(shù)y=f(x),x∈R的圖象與直線x=a可能有兩個不同的交點;
⑤一條曲線y=|3-x2|和直線y=a(a∈R)的公共點個數(shù)是m,則m的值不可能是1.
其中正確的有
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列幾個命題:
①方程x2+(a-3)x+a=0有一個正實根,一個負實根,則a<0;
②函數(shù)y=
x2-1
+
1-x2
是偶函數(shù),但不是奇函數(shù);
③設(shè)函數(shù)y=f(x)定義域為R,則函數(shù)y=f(1-x)與y=f(x-1)的圖象關(guān)于y軸對稱;
④一條曲線y=|3-x2|和直線y=a(a∈R)的公共點個數(shù)是m,則m的值不可能是1.
其中正確的有
①④
①④

查看答案和解析>>

同步練習(xí)冊答案