13.“[x]”表示不超過(guò)實(shí)數(shù)x的最大的整數(shù),如[1.3]=1,[2]=2,[-2.3]=-3,又記{x}=x-[x],已知函數(shù)f(x)=[x]-{x},x∈R,給出以下命題:
①f(x)的值域?yàn)镽;
②f(x)在區(qū)間[k,k+1],k∈Z上單調(diào)遞減;
③f(x)的圖象關(guān)于點(diǎn)(1,0)中心對(duì)稱(chēng);
④函數(shù)|f(x)|為偶函數(shù).
其中所有正確命題的序號(hào)是①(將所有正確命題序號(hào)填上)

分析 由題意畫(huà)出分段函數(shù)的圖象,由圖象逐一核對(duì)四個(gè)命題得答案.

解答 解:由題意,f(x)=[x]-{x}=[x]-{x-[x]}=2[x]-x.
作出函數(shù)f(x)=2[x]-x的圖象如圖,

由圖可知,f(x)的值域?yàn)镽,故①正確;
f(x)在區(qū)間[k,k+1),k∈Z上單調(diào)遞減,故②錯(cuò)誤;
f(x)的圖象不關(guān)于點(diǎn)(1,0)中心對(duì)稱(chēng),故③錯(cuò)誤;
函數(shù)|f(x)|不是偶函數(shù),故④錯(cuò)誤.
∴正確命題的序號(hào)為①.
故答案為:①.

點(diǎn)評(píng) 本題考查命題的真假判斷與應(yīng)用,考查數(shù)形結(jié)合的解題思想方法,考查分段函數(shù)的應(yīng)用,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.設(shè)(x-$\sqrt{2}$)n展開(kāi)式中,第二項(xiàng)與第四項(xiàng)的系數(shù)之比為1:2,則展開(kāi)式中第三項(xiàng)的二次項(xiàng)系數(shù)為6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.對(duì)于任意非零實(shí)數(shù)x1,x2,函數(shù)f(x)滿(mǎn)足f(x1•x2)=f(x1)+f(x2),
(1)求f(-1)的值;
(2)求證:f(x)是偶函數(shù);
(3)已知f(x)在(0,+∞)上是增函數(shù),若f(2x-1)<f(x),求x取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.若二次函數(shù)滿(mǎn)足f(x+1)-f(x)=2x+3,且f(0)=3.
(1)求f(x)的解析式;
(2)設(shè)g(x)=f(x)-ax,求g(x)在[0,2]的最小值g(a)的表達(dá)式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.已知函數(shù)f(x)滿(mǎn)足:f(p+q)=f(p)f(q),f(1)=2,則$\frac{f(2)}{f(1)}$+$\frac{f(3)}{f(2)}$+$\frac{f(4)}{f(3)}$+$\frac{f(5)}{f(4)}$+…+$\frac{f(2014)}{f(2013)}$=4026.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.函數(shù)f(x)的定義域?yàn)镽,以下命題正確的是(  )
①同一坐標(biāo)系中,函數(shù)y=f(x-1)與函數(shù)y=f(1-x)的圖象關(guān)于直線x=1對(duì)稱(chēng);
②函數(shù)f(x)的圖象既關(guān)于點(diǎn)(-$\frac{3}{4}$,0)成中心對(duì)稱(chēng),對(duì)于任意x,又有f(x+$\frac{3}{2}$)=-f(x),則f(x)的圖象關(guān)于直線x=$\frac{3}{2}$對(duì)稱(chēng);
③函數(shù)f(x)對(duì)于任意x,滿(mǎn)足關(guān)系式f(x+2)=-f(-x+4),則函數(shù)y=f(x+3)是奇函數(shù).
A.①②B.①③C.②③D.①②③

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.執(zhí)行如圖所示的程序框圖,輸出的結(jié)果是( 。
A.3B.9C.27D.64

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.sin75°=( 。
A.$\frac{{\sqrt{3}-\sqrt{2}}}{4}$B.$\frac{{\sqrt{6}-\sqrt{2}}}{4}$C.$\frac{{\sqrt{3}+\sqrt{2}}}{4}$D.$\frac{{\sqrt{6}+\sqrt{2}}}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.圓M:x2+y2-2y=24,直線l:x+y=11,l上一點(diǎn)A的橫坐標(biāo)為a,過(guò)點(diǎn)A作圓M的兩條切線l1,l2,切點(diǎn)為B,C.
(Ⅰ)當(dāng)a=0時(shí),求直線l1,l2的方程;
(Ⅱ)是否存在點(diǎn)A,使得$\overrightarrow{AB}•\overrightarrow{AC}$=-2?若存在,求出點(diǎn)A的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.
(Ⅲ)求證當(dāng)點(diǎn)A在直線l運(yùn)動(dòng)時(shí),直線BC過(guò)定點(diǎn)P0
(附加題)問(wèn):第(Ⅲ)問(wèn)的逆命題是否成立?

查看答案和解析>>

同步練習(xí)冊(cè)答案