(2013•南通一模)若Sn為等差數(shù)列{an}的前n項(xiàng)和,S9=-36,S13=-104,則a5與a7的等比中項(xiàng)為
±4
2
±4
2
分析:由條件利用等比數(shù)列的性質(zhì)可得 9a5=-36,13a7=-104,解得 a5=-4,a7=-8,從而求得a5與a7的等比中項(xiàng)±
a5•a7
的值.
解答:解:∵Sn為等差數(shù)列{an}的前n項(xiàng)和,S9=-36,S13=-104,
則由等比數(shù)列的性質(zhì)可得 9a5=-36,13a7=-104.
解得  a5=-4,a7=-8,
則a5與a7的等比中項(xiàng)±
a5•a7
=±4
2
,
故答案為 ±4
2
點(diǎn)評(píng):本題主要考查等比數(shù)列的性質(zhì),等比數(shù)列求和公式的應(yīng)用,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•南通一模)已知雙曲線(xiàn)
x2
a2
-
y2
b2
=1
的一個(gè)焦點(diǎn)與圓x2+y2-10x=0的圓心重合,且雙曲線(xiàn)的離心率等于
5
,則該雙曲線(xiàn)的標(biāo)準(zhǔn)方程為
x2
5
-
y2
20
=1
x2
5
-
y2
20
=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•南通一模)已知命題p:“正數(shù)a的平方不等于0”,命題q:“若a不是正數(shù),則它的平方等于0”,則p是q的
否命題
否命題
.(從“逆命題、否命題、逆否命題、否定”中選一個(gè)填空)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•南通一模)曲線(xiàn)f(x)=
f′(1)
e
ex-f(0)x+
1
2
x2
在點(diǎn)(1,f(1))處的切線(xiàn)方程為
y=ex-
1
2
y=ex-
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•南通一模)已知數(shù)列{an}滿(mǎn)足:a1=2a-2,an+1=aan-1+1 (n∈N*)
(1)若a=-1,求數(shù)列{an}的通項(xiàng)公式;
(2)若a=3,試證明:對(duì)?n∈N*,an是4的倍數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案