【題目】將函數(shù)f(x)=sin(2x+φ)的圖象向左平移 個(gè)單位,所得到的函數(shù)圖象關(guān)于y軸對(duì)稱,則φ的一個(gè)可能取值為(
A.
B.
C.0
D.-

【答案】B
【解析】解:將函數(shù)f(x)=sin(2x+φ)的圖象向左平移 個(gè)單位, 可得到的函數(shù)y=sin[2(x+ )+φ)]=sin(2x+ +φ)的圖象,
再根據(jù)所得圖象關(guān)于y軸對(duì)稱,可得 +φ=kπ+ ,即φ=kπ+ ,k∈z,
則φ的一個(gè)可能取值為 ,
故選:B.
【考點(diǎn)精析】認(rèn)真審題,首先需要了解函數(shù)y=Asin(ωx+φ)的圖象變換(圖象上所有點(diǎn)向左(右)平移個(gè)單位長(zhǎng)度,得到函數(shù)的圖象;再將函數(shù)的圖象上所有點(diǎn)的橫坐標(biāo)伸長(zhǎng)(縮短)到原來的倍(縱坐標(biāo)不變),得到函數(shù)的圖象;再將函數(shù)的圖象上所有點(diǎn)的縱坐標(biāo)伸長(zhǎng)(縮短)到原來的倍(橫坐標(biāo)不變),得到函數(shù)的圖象).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在梯形ABCD中,BC∥AD,AB⊥BC,AB=BC=1,PA=AD=2,PA⊥平面ABCD,E為PD中點(diǎn).
(1)求證:CE∥平面PAB;
(2)求直線CE與平面PAD所成角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱柱ABC﹣A1B1C1中,側(cè)棱垂直于底面,AB⊥BC,AA1=AC=2,BC=1,E,F(xiàn)分別是A1C1 , BC的中點(diǎn).
(1)求證:AB⊥C1F;
(2)求證:C1F∥平面ABE;
(3)求三棱錐E﹣ABC的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知一圓經(jīng)過點(diǎn)A(2,﹣3)和B(﹣2,﹣5),且圓心C在直線l:x﹣2y﹣3=0上,求此圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】有以下四種變換方式:

向左平移個(gè)單位長(zhǎng)度,再將每個(gè)點(diǎn)的橫坐標(biāo)縮短為原來的;

向右平移個(gè)單位長(zhǎng)度,再將每個(gè)點(diǎn)的橫坐標(biāo)縮短為原來的;

每個(gè)點(diǎn)的橫坐標(biāo)縮短為原來的,向右平移個(gè)單位長(zhǎng)度;

每個(gè)點(diǎn)的橫坐標(biāo)縮短為原來的,向左平移個(gè)單位長(zhǎng)度;

其中能將的圖像變換成函數(shù)的圖像的是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=cosωx(sinωx+ cosωx)(ω>0),如果存在實(shí)數(shù)x0 , 使得對(duì)任意的實(shí)數(shù)x,都有f(x0)≤f(x)≤f(x0+2016π)成立,則ω的最小值為(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校從參加高三模擬考試的學(xué)生中隨機(jī)抽取60名學(xué)生,按其數(shù)學(xué)成績(jī)(均為整數(shù))分成六組[90,100),[100,110),…,[140,150]后得到如下部分頻率分布直方圖,觀察圖中的信息,回答下列問題:
(Ⅰ)補(bǔ)全頻率分布直方圖;
(Ⅱ)估計(jì)本次考試的數(shù)學(xué)平均成績(jī)(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表);
(Ⅲ)用分層抽樣的方法在分?jǐn)?shù)段為[110,130)的學(xué)生成績(jī)中抽取一個(gè)容量為6的樣本,再?gòu)倪@6個(gè)樣本中任取2人成績(jī),求至多有1人成績(jī)?cè)诜謹(jǐn)?shù)段[120,130)內(nèi)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知等差數(shù)列{an}的前n項(xiàng)和為Sn(n∈N*),a3=5,S10=100.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=2 +2n求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)入射光線沿直線y=2x+1射向直線y=x,則被y=x反射后,反射光線所在的直線方程是(
A.x﹣2y﹣1=0
B.x﹣2y+1=0
C.3x﹣2y+1=0
D.x+2y+3=0

查看答案和解析>>

同步練習(xí)冊(cè)答案