對于任意實數(shù)x,符號[x]表示x的整數(shù)部分,即[x]是不超過x的最大整數(shù)”.在實數(shù)軸R(箭頭向右)上[x]是在點x左側(cè)的第一個整數(shù)點,當x是整數(shù)時[x]就是x.這個函數(shù)[x]叫做“取整函數(shù)”,它在數(shù)學本身和生產(chǎn)實踐中有廣泛的應用.那么[log21]+[log22]+[log23]+[log24]+…+[log21024]=________.

8204
分析:根據(jù)題意可得,[log21]=0有1個0,[log22]=[log23]=1,有2個1,[log24]=[log25]=…=[log27]=2,有4個2
[log28]=[log29]=[log210]=…=[log215]=3,有8個3,[log21024]=10,則[log21]+[log22]+[log23]+[log24]+…+[log21024]=1×2+2×22+3×23+…+9×29+10,令S=1×2+2×22+…+9×29,利用錯位相減可求S,進而可求
解答:根據(jù)題意可得,[log21]=0有1個0,[log22]=[log23]=1,有2個1,[log24]=[log25]=…=[log27]=2,有4個2
[log28]=[log29]=[log210]=…=[log215]=3,有8個3,[log21024]=10
所以,[log21]+[log22]+[log23]+[log24]+…+[log21024]
=0+1+1+2+2+2+2+3+3+3+3+3+3+3+3+…+10
=1×2+2×22+3×23+…+9×29+10
令S=1×2+2×22+…+9×29
2S=1×22+2×23+…+8×29+9×210
所以,-S=2+22+…+29-9×210
=
所以,S=8×210+2=8194
故答案為:8204
點評:本題以新定義取整函數(shù)為切入點,主要考查了歸納推理的應用,及數(shù)列求和的錯位相減的求和方法的應用,是一道構(gòu)思巧妙的試題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

對于任意實數(shù)x,符號[x]表示x的整數(shù)部分,即[x]是“不超過x的最大整數(shù)”,在數(shù)軸上,當x是整數(shù),[x]就是x,當x不是整數(shù),[x]是點x左側(cè)的第一個整數(shù)點,這個函數(shù)叫做“取整函數(shù)”,也叫高斯(Gauss)函數(shù),如[-2]=-2,[-1.5]=-2,[2.5]=2,則[log2
1
4
]+[log2
1
3
]+[log2
1
2
]+[log21]+[log22]+[log23]+[log24]+…+[log216]的值為( 。
A、28B、32C、33D、34

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

8、對于任意實數(shù)x,符號[x]表示x的整數(shù)部分,即[x]是不超過x的最大整數(shù),例如[2]=2;[2.1]=2;[-2.2]=-3,這個函數(shù)[x]叫做“取整函數(shù)”,它在數(shù)學本身和生產(chǎn)實踐中有廣泛的應用,那么[log31]+[log32]+[log33]+…+[log3243]的值為(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

13、對于任意實數(shù)x,符號[x]表示x的整數(shù)部分,即[x]是不超過x的最大整數(shù),這個函數(shù)[x]叫做“取整函數(shù)”,那么[log31]+[log32]+[log33]+[log34]+…+[log3243]=
857

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:閱讀理解

閱讀下列一段材料,然后解答問題:對于任意實數(shù)x,符號[x]表示“不超過x的最大整數(shù)”,在數(shù)軸上,當x是整數(shù),[x]就是x,當x不是整數(shù)時,[x]是點x左側(cè)的第一個整數(shù)點,這個函數(shù)叫做“取整函數(shù)”,也叫高斯(Gauss)函數(shù);如[-2]=-2,[-1.5]=-2,[2.5]=2;則[log2
1
4
]+[log2
1
3
]+[log2
1
2
]+[log21]+[log22]+[log23]+[log24]
+[log216]的值為
3
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

對于任意實數(shù)x,符號[x]表示x的整數(shù)部分,即[x]是不超過x的最大整數(shù),則[log21]+[log22]+[log23]+[log24]+[log25]=
 

查看答案和解析>>

同步練習冊答案