【題目】已知橢圓 的右焦點(diǎn)為F,過橢圓C中心的弦PQ長(zhǎng)為2,且∠PFQ=90°,△PQF的面積為1.
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)A1、A2分別為橢圓C的左、右頂點(diǎn),S為直線 上一動(dòng)點(diǎn),直線A1S交橢圓C于點(diǎn)M,直線A2S交橢圓于點(diǎn)N,設(shè)S1、S2分別為△A1SA2、△MSN的面積,求 的最大值.
【答案】解:(Ⅰ)弦PQ過橢圓中心,且∠PFQ=90°,則c=丨OF丨= 丨PQ丨=1,
不妨設(shè)P(x0 , y0)(x0 , y0>0),
∴,△PQF的面積= ×丨OF丨×2y0=y0=1,則x0=1,b=1,
a2=b2+c2=2,
∴橢圓方程為 +y2=1;
(Ⅱ)設(shè)S(2 ,t),直線A1S:x= y﹣ ,則 ,
整理( +2)y2﹣ y=0,解得y1= ,
同理,設(shè)直線A2S:x= y+ ,
得( +2)y2+ y=0,解得y1=﹣ ,
則 =丨 × 丨
≤ × = ,
當(dāng)且僅當(dāng)t2+9=3t2+3,即t=± 時(shí)取“=”
【解析】(Ⅰ)由c=丨OF丨= 丨PQ丨=1,根據(jù)三角形的面積公式,即可求得b的值,a2=b2+c2=2,即可求得橢圓方程;(Ⅱ)設(shè)S點(diǎn)坐標(biāo),求直線A1S及A2S代入橢圓方程,求得M和N點(diǎn)坐標(biāo),根據(jù)三角形的面積公式及基本不等式的性質(zhì),即可求得 的最大值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的方程為,雙曲線的一條漸近線與軸所成的夾角為,且雙曲線的焦距為.
(1)求橢圓的方程;
(2)設(shè)分別為橢圓的左,右焦點(diǎn),過作直線 (與軸不重合)交橢圓于, 兩點(diǎn),線段的中點(diǎn)為,記直線的斜率為,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知下列命題:
①意味著每增加一個(gè)單位,平均增加8個(gè)單位
②投擲一顆骰子實(shí)驗(yàn),有擲出的點(diǎn)數(shù)為奇數(shù)和擲出的點(diǎn)數(shù)為偶數(shù)兩個(gè)基本事件
③互斥事件不一定是對(duì)立事件,但對(duì)立事件一定是互斥事件
④在適宜的條件下種下一顆種子,觀察它是否發(fā)芽,這個(gè)實(shí)驗(yàn)為古典概型
其中正確的命題有__________________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知m>0, , .
(1) 若p是q的充分不必要條件,求實(shí)數(shù)m的取值范圍;
(2) 若m=5,“”為真命題,“”為假命題,求實(shí)數(shù)x的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知極點(diǎn)為直角坐標(biāo)系的原點(diǎn),極軸為x軸正半軸且單位長(zhǎng)度相同的極坐標(biāo)系中曲線C1:ρ=1, (t為參數(shù)).
(Ⅰ)求曲線C1上的點(diǎn)到曲線C2距離的最小值;
(Ⅱ)若把C1上各點(diǎn)的橫坐標(biāo)都擴(kuò)大為原來的2倍,縱坐標(biāo)擴(kuò)大為原來的 倍,得到曲線 .設(shè)P(﹣1,1),曲線C2與 交于A,B兩點(diǎn),求|PA|+|PB|.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】平面上,點(diǎn)A、C為射線PM上的兩點(diǎn),點(diǎn)B、D為射線PN上的兩點(diǎn),則有 (其中S△PAB、S△PCD分別為△PAB、△PCD的面積);空間中,點(diǎn)A、C為射線PM上的兩點(diǎn),點(diǎn)B、D為射線PN上的兩點(diǎn),點(diǎn)E、F為射線PL上的兩點(diǎn),則有 =(其中VP﹣ABE、VP﹣CDF分別為四面體P﹣ABE、P﹣CDF的體積).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=ex﹣ax+a(a∈R),其中e為自然對(duì)數(shù)的底數(shù).
(1)討論函數(shù)y=f(x)的單調(diào)性;
(2)函數(shù)y=f(x)的圖象與x軸交于A(x1 , 0),B(x2 , 0)兩點(diǎn),x1<x2 , 點(diǎn)C在函數(shù)y=f(x)的圖象上,且△ABC為等腰直角三角形,記 ,求at﹣(a+t)的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com