已知a>b>0,求證:ea+e-a>eb+e-b
考點:不等式的證明,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性
專題:導(dǎo)數(shù)的概念及應(yīng)用
分析:不妨設(shè)f(x)=ex+e-x,求出函數(shù)的導(dǎo)數(shù),找到單調(diào)區(qū)間,從而得到f(a)>f(b),問題得證.
解答: 解:不妨設(shè)f(x)=ex+e-x,
法1:∴f(a)=ea+e-a,f(b)=eb+e-b,
∴f(a)-f(b)=ea+
1
ea
-eb-
1
eb

=
(ea-eb)(eaeb-1)
eaeb

∵a>b>0,
∴對于分子:ea>eb,eaeb>1,故分子大于0,
對于分母:eaeb>0,
∴f(a)-f(b)>0,
∴ea+e-a>eb+e-b
法2:∵f′(x)=ex-
1
ex
=
(ex)2-1
ex
,
當(dāng)x>0時,ex>1,∴(ex2-1>0,
∴f′(x)>0,
∴x>0時,f(x)是增函數(shù),
∴f(a)>f(b),
∴ea+e-a>eb+e-b
點評:本題考查了函數(shù)的單調(diào)性,導(dǎo)數(shù)的應(yīng)用,不等式的證明,是一道基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x),g(x)都定義在實數(shù)集R上,且滿足f(x)為奇函數(shù),g(x)為偶函數(shù),f(x)+g(x)=x2+x-2,試求函數(shù)f(x),g(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在三棱柱ABC-A1B1C1中,側(cè)棱A1A⊥底面ABC,AB⊥BC,E是A1C的中點,D在線段AC上,并且DE⊥A1C,已知A1A=AB=
2
,BC=2.
(1)求證:A1C⊥平面EDB.
(2)求三棱錐E-BCD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

四棱錐P-ABCD的底面是邊長為2的菱形,且∠BAD=60°,PA⊥平面ABCD,設(shè)E為BC的中點,二面角P-DE-A為45°.
(1)求點A到平面PDE的距離;
(2)在PA上確定一點F,使BF∥平面PDE;
(3)求異面直線PC與DE所成的角(用反三角函數(shù)表示);
(4)求面PDE與面PAB所成的不大于直二面角的二面角的大。ㄓ梅慈呛瘮(shù)表示).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知中心在坐標(biāo)原點,焦點在x軸上的橢圓過點P(2,
3
),且它的離心率e=
1
2

(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)與圓(x-1)2+y2=1相切的直線l:y=kx+t交橢圓于M,N兩點,若橢圓上一點C滿足
OM
+
ON
OC
,求實數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=2sinωxsin(ωx+
π
3
)+k(ω>0,k為常數(shù)).
(1)若f(x)的圖象中相鄰兩對稱軸之間的距離不小于
π
2
,求ω的取值范圍;
(2)若f(x)的最小正周期為π,且當(dāng)x∈[-
π
6
,
π
6
]時,f(x)的最大值是
1
2
,又f(α)=
3
5
,求f(
π
2
-α)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓O的方程為x2+y2=9,求該圓中經(jīng)過點A(1,2)的弦的中點P的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知正四面體A-BCD中,O為底面正三角形BCD的中心,E為AB中點,求異面直線OE與BC所成角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若偶函數(shù)f(x)滿足f(x+1)=f(x-1),且x∈[0,1]時,f(x)=
x
,則f(
7
2
)=
 

查看答案和解析>>

同步練習(xí)冊答案