與直線l:3x-4y-1=0平行且到直線l的距離為2的直線方程是( 。
A、3x-4y-11=0或3x-4y+9=0
B、3x-4y-11=0
C、3x-4y+11=0或3x-4y-9=0
D、3x-4y+9=0
考點(diǎn):兩條平行直線間的距離,直線的一般式方程與直線的平行關(guān)系
專(zhuān)題:計(jì)算題,直線與圓
分析:根據(jù)平行線的直線系方程設(shè)所求的直線方程為3x-4y+c=0,再由題意和兩平行線間的距離公式列方程,求出c的值,代入所設(shè)的方程即可.
解答: 解:由題意設(shè)所求的直線方程為3x-4y+c=0,
根據(jù)與直線3x-4y-1=0的距離為2得
|c+1|
5
=2,
解得c=-11,或 c=9,
故所求的直線方程為3x-4y-11=0或3x-4y+9=0.
故選:A.
點(diǎn)評(píng):本題考查兩直線平行的性質(zhì),兩平行線間的距離公式,設(shè)出所求的直線方程為3x-4y+c=0,是解題的突破口.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f1(x)=e|x-2a+1|,f2(x)=e|x-a|+1,x∈R,1≤a≤6.
(1)若a=2,求使f1(x)=f2(x)的x的值;
(2)若|f1(x)-f2(x)|=f2(x)-f1(x)對(duì)于任意的實(shí)數(shù)x恒成立,求a的取值范圍;
(3)求函數(shù)g(x)=
f1(x)+f2(x)
2
-
|f1(x)-f2(x)|
2
在[1,6]上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若直線y=2x+t被圓x2+y2=8截得的弦長(zhǎng)大于等于
4
2
3
,則t的取值范圍為     (  )
A、[-
8
5
3
8
5
3
]
B、(-
8
5
3
8
5
3
C、[
8
5
3
,+∞)
D、(-∞,
8
5
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
ax2-lnx+b
x
,且f(1)=0,f′(1)=1.
(Ⅰ)求常數(shù)a,b的值;
(Ⅱ)若1≤λ≤2
2
,證明:函數(shù)g(x)=f(x)-λlnx(0<x≤1)的值恒非負(fù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

動(dòng)點(diǎn)A到定點(diǎn)F1(-2,0)和2(2,0)的距離的和為4,則動(dòng)點(diǎn)A的軌跡為(  )
A、橢圓B、線段
C、無(wú)圖形D、兩條射線

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知a<0,直線l1:2x+ay=2,l2:a2x+2y=1,若l1⊥l2,則a=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知(1+
x
2
n(n∈N*)展開(kāi)式中前三項(xiàng)的系數(shù)分別為a0、a1、a2,且12a0a2=5a12
(1)求n的值;
(2)求展開(kāi)式中系數(shù)最大的項(xiàng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某奇石廠為適應(yīng)市場(chǎng)需求,投入98萬(wàn)元引進(jìn)我國(guó)先進(jìn)設(shè)備,并馬上投入生產(chǎn).第一年需各種費(fèi)用12萬(wàn)元,從第二年開(kāi)始,每年所需費(fèi)用會(huì)比上一年增加4萬(wàn)元.而每年因引入該設(shè)備可獲得年利潤(rùn)為50萬(wàn)元.請(qǐng)你根據(jù)以上數(shù)據(jù),解決以下問(wèn)題:
(1)引進(jìn)該設(shè)備多少年后,該廠開(kāi)始盈利?
(2)引進(jìn)該設(shè)備若干年后,該廠提出兩種處理方案:
第一種:年平均利潤(rùn)達(dá)到最大值時(shí),以26萬(wàn)元的價(jià)格賣(mài)出.
第二種:盈利總額達(dá)到最大值時(shí),以8萬(wàn)元的價(jià)格賣(mài)出.問(wèn)哪種方案較為合算?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知等差數(shù)列{an}的前n項(xiàng)和為Sn
S4
S2
=4,則
S6
S4
=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案