若橢圓
x2
25
+
y2
16
=1和雙曲線(xiàn)
x2
4
-
y2
5
=1
的共同焦點(diǎn)為F1,F(xiàn)2,P是兩曲線(xiàn)的一個(gè)交點(diǎn),則|PF1|•|PF2|的值為
21
21
分析:設(shè)|PF1|>|PF2|,根據(jù)橢圓和雙曲線(xiàn)的定義可分別表示出|PF1|+|PF2|和|PF1|-|PF2|,進(jìn)而可表示出|PF1|和|PF2|,根據(jù)焦點(diǎn)相同進(jìn)而可求得|PF1|•|PF2|的表達(dá)式.
解答:解:由橢圓和雙曲線(xiàn)定義
不妨設(shè)|PF1|>|PF2|
則|PF1|+|PF2|=10
|PF1|-|PF2|=4
所以|PF1|=7
|PF2|=3
∴|PF1|•|PF2|=21.
故答案為:21.
點(diǎn)評(píng):本題主要考查了圓錐曲線(xiàn)的共同特征,解答關(guān)鍵是正確運(yùn)用橢圓和雙曲線(xiàn)的簡(jiǎn)單的幾何性質(zhì).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

橢圓
X2
25
+
Y2
9
=1
上不同三點(diǎn)A(x1,y1),B(4,
9
5
),C(x2,y2)
與焦點(diǎn)F(4,0)的距離成等差數(shù)列.
(1)求證x1+x2=8;
(2)若線(xiàn)段的垂直平分線(xiàn)與軸的交點(diǎn)為T(mén),求直線(xiàn)的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若橢圓或雙曲線(xiàn)上存在點(diǎn)P,使得點(diǎn)P到兩個(gè)焦點(diǎn)的距離之比為2:1,則稱(chēng)此橢圓或雙曲線(xiàn)存在“Ω點(diǎn)”,下列曲線(xiàn)中存在“Ω點(diǎn)”的是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

以下四個(gè)關(guān)于圓錐曲線(xiàn)的命題中:
①設(shè)A、B為兩個(gè)定點(diǎn),k為非零常數(shù),|
PA
|-|
PB
|=k
,則動(dòng)點(diǎn)P的軌跡為雙曲線(xiàn);
②過(guò)定圓C上一定點(diǎn)A作圓的動(dòng)點(diǎn)弦AB,O為坐標(biāo)原點(diǎn),若
OP
=
1
2
(
OA
+
OB
)
,則動(dòng)點(diǎn)P的軌跡為橢圓;
③方程2x2-5x+2=0的兩根可分別作為橢圓和雙曲線(xiàn)的離心率;
④雙曲線(xiàn)
x2
35
-y2=1
和橢圓
x2
25
+
y2
9
=1
有相同的焦點(diǎn).
其中真命題的序號(hào)為
(寫(xiě)出所有真命題的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給出下列命題:
①若橢圓
x2
25
+
y2
16
=1
的左右焦點(diǎn)分別為F1、F2,動(dòng)點(diǎn)P滿(mǎn)足|PF1|+|PF2|>6,則動(dòng)點(diǎn)P不一定在該橢圓外部;
②以?huà)佄锞(xiàn)y2=2px(p>0)的焦點(diǎn)為圓心,以
p
2
為半徑的圓與該拋物線(xiàn)必有3個(gè)不同的公共點(diǎn);
③雙曲線(xiàn)
x2
25
-
y2
9
=1
與橢圓
x2
35
+y2=1
有相同的焦點(diǎn);
④拋物線(xiàn)y2=4x上動(dòng)點(diǎn)P到其焦點(diǎn)的距離的最小值≥1.
其中真命題的序號(hào)為
①③④
①③④
.(寫(xiě)出所有真命題的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

橢圓
x2
25
+
y2
16
=1
的左、右焦點(diǎn)分別為F1,F(xiàn)2,弦AB過(guò)F1,若△ABF2的內(nèi)切圓面積為π,A、B兩點(diǎn)的坐標(biāo)分別為(x1,y1)和(x2,y2),則|y2-y1|的值為( 。
A、
5
3
B、
10
3
C、
20
3
D、
5
3

查看答案和解析>>

同步練習(xí)冊(cè)答案