已知點(diǎn)(1,2)是函數(shù)的圖像上一點(diǎn),數(shù)列的前n項(xiàng)和.
(1)求數(shù)列的通項(xiàng)公式;
(2)將數(shù)列前30項(xiàng)中的第3項(xiàng),第6項(xiàng),…,第3k項(xiàng)刪去,求數(shù)列前30項(xiàng)中剩余項(xiàng)的和.

(1)(2)

解析試題分析:(Ⅰ)把點(diǎn)(1,2)代入函數(shù),得. 當(dāng)時(shí),當(dāng)時(shí),  經(jīng)驗(yàn)證可知時(shí),也適合上式, .
(Ⅱ)由(Ⅰ)知數(shù)列為等比數(shù)列,公比為2,故其第3項(xiàng),第6項(xiàng),…,第30項(xiàng)也為等比數(shù)列,首項(xiàng)公比為其第10項(xiàng)
∴此數(shù)列的和為又?jǐn)?shù)列的前30項(xiàng)和為 ∴所求剩余項(xiàng)的和為
考點(diǎn):數(shù)列求通項(xiàng)求和
點(diǎn)評(píng):由數(shù)列前n項(xiàng)和求通項(xiàng)的方法:;在等比數(shù)列中每隔k項(xiàng)取一項(xiàng),取出的項(xiàng)構(gòu)成等比數(shù)列

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知數(shù)列的前項(xiàng)和為,且滿足;
(Ⅰ)求數(shù)列的通項(xiàng)公式;
(Ⅱ)若,且的前n項(xiàng)和為,求使得對(duì)都成立的所有正整數(shù)k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知數(shù)列{an}的前n項(xiàng)和,且的最大值為4.
(1)確定常數(shù)k的值,并求數(shù)列{an}的通項(xiàng)公式an
(2)令,數(shù)列{bn}的前n項(xiàng)和為T(mén)n,試比較Tn的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

在數(shù)列中,, 
(1)求的值;
(2)證明:數(shù)列是等比數(shù)列,并求的通項(xiàng)公式;
(3)求數(shù)列的前項(xiàng)和

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)數(shù)列的前項(xiàng)和為,且…);
①證明:數(shù)列是等比數(shù)列;
②若數(shù)列滿足…),求數(shù)列的通項(xiàng)公式。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

在數(shù)列中,,且滿足 .
(Ⅰ)求及數(shù)列的通項(xiàng)公式;
(Ⅱ)設(shè)求數(shù)列的前項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

數(shù)列中,,
(1)若數(shù)列為公差為11的等差數(shù)列,求
(2)若數(shù)列為以為首項(xiàng)的等比數(shù)列,求數(shù)列的前m項(xiàng)和

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知數(shù)列的首項(xiàng),且N*),數(shù)列的前項(xiàng)和。
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè),證明:當(dāng)且僅當(dāng)時(shí),。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分12分)
在數(shù)列中,為常數(shù),,且成公比不等
于1的等比數(shù)列.
(Ⅰ)求的值;
(Ⅱ)設(shè),求數(shù)列的前項(xiàng)和

查看答案和解析>>

同步練習(xí)冊(cè)答案