5.已知($\sqrt{x}$-$\frac{2}{x^2}$)n(n∈N*)的展開式中第五項的系數(shù)與第三項的系數(shù)的比是10:1.
(1)求n的值和展開式中二項式系數(shù)最大的項;
(2)求展開式中含${x}^{\frac{3}{2}}$的項和展開式中各項系數(shù)的和.

分析 (1)寫出二項展開式的第五項與第三項的系數(shù),由系數(shù)比求得n值,進一步求得展開式中二項式系數(shù)最大的項;
(2)寫出二項展開式的通項,由x得指數(shù)等于$\frac{3}{2}$求得r值,得到展開式中含${x}^{\frac{3}{2}}$的項,在二項式中取x=1得到展開式中各項系數(shù)的和.

解答 解:依題意,第五項系數(shù)為${C}_{n}^{4}•(-2)^{4}$,第三項系數(shù)為${C}_{n}^{2}•(-2)^{2}$.
(1)由$\frac{{C}_{n}^{4}•(-2)^{4}}{{C}_{n}^{2}•(-2)^{2}}=\frac{10}{1}$,得n2-5n-24=0,解得n=8或n=-3(舍),
∴($\sqrt{x}$-$\frac{2}{x^2}$)8的展開式中二項式系數(shù)的最大項為${C}_{8}^{4}(\sqrt{x})^{4}•(-\frac{2}{{x}^{2}})^{4}={2}^{4}{C}_{8}^{4}{x}^{-6}=1120{x}^{-6}$;
(2)∵${T}_{r+1}={C}_{8}^{r}(\sqrt{x})^{8-r}•(-\frac{2}{{x}^{2}})^{r}$=${C}_{8}^{r}(-2)^{r}{x}^{4-\frac{5r}{2}}$.
令$4-\frac{5r}{2}=\frac{3}{2}$,得r=1,
∴${T}_{2}={C}_{8}^{1}(-2)^{1}{x}^{\frac{3}{2}}=-16{x}^{\frac{3}{2}}$.
∵($\sqrt{x}$-$\frac{2}{x^2}$)8 =${C}_{8}^{0}(\sqrt{x})^{8}+{C}_{8}^{1}(\sqrt{x})^{7}(-\frac{2}{{x}^{2}})^{1}+…+$${C}_{8}^{8}(\sqrt{x})^{0}(-\frac{2}{{x}^{2}})^{8}$,
令x=1,則各項系數(shù)之和為(1-2)8=1.

點評 本題考查二項式系數(shù)的性質,關鍵是熟記二項展開式的通項,是中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

15.如圖,某汽車前燈的反光曲面與軸截面的交線為拋物線的一部分,燈口直徑AB為140$\sqrt{2}$mm,反光曲面的頂點O到燈口的距離是70mm,由拋物線的性質可知,當燈泡安裝在拋物線的焦點處時,經(jīng)反光曲面反射的光束是平行光束,問:為了獲得平行光束,應怎樣安裝燈泡?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.復數(shù)z1=a2-2-3ai,z2=a+(a2+2)i,若z1+z2是純虛數(shù),那么實數(shù)a的值為( 。
A.1B.2C.-2D.1或-2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.方程log2(4x+4)=x+log2(2x+1-3)的解為2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

20.已知多項式函數(shù)f(x)=2x5-5x4-4x3+3x2-524,求當x=5時的函數(shù)的值2176.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.已知△AOB內接于拋物線y2=4x,焦點F是△AOB的垂心,則點A,B的坐標A(5,2$\sqrt{5}$),B(5,-2$\sqrt{5}$).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.已知A${\;}_{n}^{2}$=7A${\;}_{n-4}^{2}$,則n=7.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.已知{an}是遞增的等差數(shù)列,a2,a4是方程x2-5x+6=0的根.
(Ⅰ)求{an}的通項公式;
(Ⅱ)若bn=2n•an,求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.袋中有大小相同的10個乒乓球,其中6個黃色球,4個白色球,要求不放回抽樣,每次任取一球,取2次,第二次才取到黃色球的概率為$\frac{4}{15}$.

查看答案和解析>>

同步練習冊答案