【題目】已知, .
(Ⅰ)討論的單調(diào)性;
(Ⅱ)若,求實數(shù)的取值范圍.
【答案】(Ⅰ)詳見解析;(Ⅱ) .
【解析】試題分析:
(Ⅰ)由函數(shù)的解析式可得 ,當(dāng)時, , 在上單調(diào)遞增;當(dāng)時,由導(dǎo)函數(shù)的符號可知在單調(diào)遞減;在單調(diào)遞增.
(Ⅱ)構(gòu)造函數(shù),問題轉(zhuǎn)化為在上恒成立,求導(dǎo)有,注意到.分類討論:當(dāng)時,不滿足題意. 當(dāng)時, , 在上單調(diào)遞增;所以,滿足題意.
則實數(shù)的取值范圍是.
試題解析:
(Ⅰ) ,
當(dāng)時, , .∴在上單調(diào)遞增;
當(dāng)時,由,得.
當(dāng)時, ;當(dāng)時, .
所以在單調(diào)遞減;在單調(diào)遞增.
(Ⅱ)令,
問題轉(zhuǎn)化為在上恒成立,
,注意到.
當(dāng)時, ,
,
因為,所以, ,
所以存在,使,
當(dāng)時, , 遞減,
所以,不滿足題意.
當(dāng)時, ,
當(dāng)時, , ,
所以, 在上單調(diào)遞增;所以,滿足題意.
綜上所述: .
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}的前n項和為Sn , 且滿足a1=1,anan+1=2Sn , 設(shè)bn= ,若存在正整數(shù)p,q(p<q),使得b1 , bp , bq成等差數(shù)列,則p+q= .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖長方體中,,分別為棱,的中點
(1)求證:平面平面;
(2)請在答題卡圖形中畫出直線與平面的交點(保留必要的輔助線),寫出畫法并計算的值(不必寫出計算過程).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直三棱柱ABC﹣A1B1C1的所有棱長都為2,點P,Q分別為棱CC1 , BC的中點,則四面體A1﹣B1PQ的體積為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2018年高考成績揭曉,某高中再創(chuàng)輝煌,考后學(xué)校對于單科成績逐個進(jìn)行分析:現(xiàn)對甲、乙兩個文科班的數(shù)學(xué)成績進(jìn)行分析,規(guī)定:大于等于135分為優(yōu)秀,135分以下為非優(yōu)秀,成績統(tǒng)計后,得到如下的列聯(lián)表,且已知在甲、乙兩個文科班全部110人中隨機(jī)抽取1人為優(yōu)秀的概率為.
(1)請完成上面的列聯(lián)表;
(2)請問:是否有75%的把握認(rèn)為“數(shù)學(xué)成績與所在的班級有關(guān)系”?
(3)用分層抽樣的方法從甲、乙兩個文科班的數(shù)學(xué)成績優(yōu)秀的學(xué)生中抽取5名學(xué)生進(jìn)行調(diào)研,然后再從這5名學(xué)生中隨機(jī)抽取2名學(xué)生進(jìn)行談話,求抽到的2名學(xué)生中至少有1名乙班學(xué)生的概率.
參考公式:(其中)
參考數(shù)據(jù):
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一兒童游樂場擬建造一個“蛋筒”型游樂設(shè)施,其軸截面如圖中實線所示.ABCD是等腰梯形,AB=20米,∠CBF=α(F在AB的延長線上,α為銳角).圓E與AD,BC都相切,且其半徑長為100﹣80sinα米.EO是垂直于AB的一個立柱,則當(dāng)sinα的值設(shè)計為多少時,立柱EO最矮?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(2016·重慶高二檢測)如圖,三棱柱ABC-A1B1C1中,側(cè)棱垂直底面,∠ACB=90°,AC=BC=AA1,D是棱AA1的中點.
(1)證明:平面BDC1⊥平面BDC.
(2)平面BDC1分此棱柱為兩部分,求這兩部分體積的比.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com