精英家教網 > 高中數學 > 題目詳情
已知橢圓C短軸的一個端點為(0,1),離心率為
2
2
3

(Ⅰ)求橢圓C的標準方程;
(Ⅱ)設直線y=x+m交橢圓C于A、B兩點,若|AB|=
6
3
5
,求m.
(1)由題意可設橢圓C的標準方程為
x2
a2
+
y2
b2
=1
(a>b>0).
∵橢圓C短軸的一個端點為(0,1),離心率為
2
2
3

b=1
c
a
=
2
2
3
a2=b2+c2
,解得a2=9,b=1,c2=8.
∴橢圓C的標準方程為
x2
9
+y2=1.
(2)設A(x1,y1),B(x2,y2).
聯立
y=x+m
x2
9
+y2=1
,
得10x2+18mx+9m2-9=0,
∴x1+x2=-
9
5
m
,x1x2=
9m2-9
10

∴|AB|=
2
(x1+x2)2-4x1x2
=
2
81m2
25
-4×
9m2-9
10
=
6
3
5

解得m=2.
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:單選題

已知實數4,m,9構成一個等比數列,則圓錐曲線x2+
y2
m
=1
的離心率為( 。
A.
30
6
B.
7
C.
30
6
7
D.
5
6
或7

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

已知A,B是橢圓
x2
a2
+
y2
b2
=1(a>b>0)
長軸的兩個端點,M,N是橢圓上關于x軸對稱的兩點,直線AM,BN的斜率分別為k1,k2(k1k2≠0),若橢圓的離心率為
3
2
,則|k1|+|k2|的最小值為( 。
A.1B.
2
C.
3
D.2

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知橢圓
x2
a2
+
y2
b2
=1
(a>b>0),A、B是橢圓上的兩點,線段AB的垂直平分線與x軸相交于點P(x0,0).證明-
a2-b2
a
x0
a2-b2
a

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

已知橢圓C:
x2
16
+
y2
12
=1
的左右焦點分別為F1、F2,則在橢圓C上滿足
PF1
PF2
=0
的點P的個數有( 。
A.0B.2C.3D.4

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

曲線
x2
36
+
y2
9
=1
與曲線
x2
36-k
+
y2
9-k
=1(k<9)
的( 。
A.長、短軸相等B.準線相等
C.離心率相等D.焦距相等

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

橢圓x2+my2=1(0<m<1)的離心率為
2
2
,則它的長軸長是______.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

已知P為橢圓
x2
16
+
y2
12
=1
上動點,F為橢圓的右焦點,點A的坐標為(3,1),則|PA|+2|PF|的最小值為( 。
A.10+
2
B.10-
2
C.5D.7

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

過橢圓
x2
a2
+
y2
b2
=1(a>b>0)的右焦點且垂直于x軸的直線與橢圓交于M、N兩點,以MN為直徑的圓恰好過左焦點,則橢圓的離心率等于______.

查看答案和解析>>

同步練習冊答案