【題目】已知函數(shù).
(1)求函數(shù)在點處的切線方程;
(2)求函數(shù)單調(diào)遞增區(qū)間;
(3)若存在,使得(是自然對數(shù)的底數(shù)),求實數(shù)的取值范圍.
【答案】(1);(2);(3).
【解析】
試題分析:(1)求導得,又切線方程為;(2)由(1)得在上是增函數(shù),又不等式的解集為故函數(shù)的單調(diào)增區(qū)間為;(3)將原命題轉化為當時,只要即可.再利用導數(shù)工具,結合分類討論思想和數(shù)形結合思想求得的取值范圍為.
試題解析:(1)因為函數(shù),
所以,,
又因為,所以函數(shù)在點處的切線方程為.
(2)由(1),,
因為當,時,總有在上是增函數(shù),
又,所以不等式的解集為,
故函數(shù)的單調(diào)增區(qū)間為.
(3)因為存在,使得成立,
而當時,,
所以只要即可.
又因為,,的變化情況如下表所示:
所以在上是減函數(shù),在上是增函數(shù),
所以當時,的最小值,
的最大值為和中的最大值.
因為,
令,因為,
所以在上是增函數(shù).
而,故當時,,即;
當時,,即.
所以,當時,,即,
函數(shù)在上是減函數(shù),解得.
當時,,即,
函數(shù)在上是減函數(shù),解得.
綜上可知,所求的取值范圍為.
科目:高中數(shù)學 來源: 題型:
【題目】已知點是直線與橢圓的一個公共點,分別為該橢圓的左右焦點,設取得最小值時橢圓為.
(I)求橢圓的方程;
(II)已知是橢圓上關于軸對稱的兩點,是橢圓上異于的任意一點,直線分別與軸交于點,試判斷是否為定值,并說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某班同學利用國慶節(jié)進行社會實踐,對歲的人群隨機抽取人進行了一次生活習慣是否符合低碳觀念的調(diào)查,若生活習慣符合低碳觀念的稱為“低碩族”,否則稱為“非低碳族”,得到如下統(tǒng)計表和各年齡段人數(shù)頻率分布直方圖:
組數(shù) | 分組 | 低碳族的人數(shù) | 占本組的頻率 |
第一組 | 120 | 0.6 | |
第二組 | 195 | ||
第三組 | 100 | 0.5 | |
第四組 | 0.4 | ||
第五組 | 30 | 0.3 | |
第六組 | 15 | 0.3 |
(1)補全頻率分布直方圖并求的值(直接寫結果);
(2)從年齡段在的“低碳族”中采用分層抽樣法抽取6人參加戶外低碳體驗活動,其中選取2人作為領隊,求選取的2名領隊中至少有1人年齡在歲的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)的的單調(diào)區(qū)間;
(2)若恒成立,試確定實數(shù)的取值范圍;
(3)證明:.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù).
(1)若是函數(shù)的極值點,1和是函數(shù)的兩個不同零點,且,求.
(2)若對任意,都存在(為自然對數(shù)的底數(shù)),使得成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某大學生在開學季準備銷售一種文具盒進行試創(chuàng)業(yè),在一個開學季內(nèi),每售出1盒該產(chǎn)品獲利潤50元,未售出的產(chǎn)品,每盒虧損30元.根據(jù)歷史資料,得到開學季市場需求量的頻率分布直方圖,如圖所示.該同學為這個開學季購進了160盒該產(chǎn)品,以(單位:盒,)表示這個開學季內(nèi)的市場需求量,(單位:元)表示這個開學季內(nèi)經(jīng)銷該產(chǎn)品的利潤.
(I)根據(jù)直方圖估計這個開學季內(nèi)市場需求量的眾數(shù)和中位數(shù);
(II)將表示為的函數(shù);
(III)根據(jù)直方圖估計利潤不少于4800元的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知圓經(jīng)過點,圓的圓心在圓的內(nèi)部,且直線被圓所截得的弦長為.點為圓上異于的任意一點,直線與軸交于點,直線與軸交于點.
(1)求圓的方程;
(2)求證: 為定值;
(3)當取得最大值時,求.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某廠生產(chǎn)產(chǎn)品的年固定成本為250萬元,每生產(chǎn)千件需另投入成本萬元,當年產(chǎn)量不足80千件時(萬元);當年產(chǎn)量不小于80千件時(萬元),每千件產(chǎn)品的售價為50萬元,該廠生產(chǎn)的產(chǎn)品能全部售完.
(1)寫出年利潤萬元關于(千件)的函數(shù)關系;
(2)當年產(chǎn)量為多少千件時該廠當年的利潤最大?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com