【題目】已知函數(shù)

1求函數(shù)在點處的切線方程;

2求函數(shù)單調(diào)遞增區(qū)間;

3若存在,使得是自然對數(shù)的底數(shù),求實數(shù)的取值范圍

【答案】12;3

【解析】

試題分析:1求導得,又切線方程為;21上是增函數(shù),又不等式的解集為故函數(shù)的單調(diào)增區(qū)間為;3將原命題轉化為當時,只要即可再利用導數(shù)工具,結合分類討論思想和數(shù)形結合思想求得的取值范圍為

試題解析:1因為函數(shù),

所以,,

又因為,所以函數(shù)在點處的切線方程為

21,

因為當時,總有上是增函數(shù),

,所以不等式的解集為,

故函數(shù)的單調(diào)增區(qū)間為

3因為存在,使得成立,

而當時,,

所以只要即可

又因為,,的變化情況如下表所示:

所以上是減函數(shù),在上是增函數(shù),

所以當時,的最小值,

的最大值中的最大值

因為,

,因為,

所以上是增函數(shù)

,故當時,,即;

時,,即

所以,當時,,即,

函數(shù)上是減函數(shù),解得

時,,即,

函數(shù)上是減函數(shù),解得

綜上可知,所求的取值范圍為

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知點是直線與橢圓的一個公共點,分別為該橢圓的左右焦點,設取得最小值時橢圓為

I求橢圓的方程;

II已知是橢圓上關于軸對稱的兩點,是橢圓上異于的任意一點,直線分別與軸交于點,試判斷是否為定值,并說明理由

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某班同學利用國慶節(jié)進行社會實踐,對歲的人群隨機抽取人進行了一次生活習慣是否符合低碳觀念的調(diào)查,若生活習慣符合低碳觀念的稱為低碩族,否則稱為非低碳族,得到如下統(tǒng)計表和各年齡段人數(shù)頻率分布直方圖:

組數(shù)

分組

低碳族的人數(shù)

占本組的頻率

第一組

120

0.6

第二組

195

第三組

100

0.5

第四組

0.4

第五組

30

0.3

第六組

15

0.3

(1)補全頻率分布直方圖并求的值(直接寫結果);

(2)從年齡段在低碳族中采用分層抽樣法抽取6人參加戶外低碳體驗活動,其中選取2人作為領隊,求選取的2名領隊中至少有1人年齡在歲的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)求函數(shù)的的單調(diào)區(qū)間;

(2)若恒成立,試確定實數(shù)的取值范圍;

(3)證明:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)

1是函數(shù)的極值點,1和是函數(shù)的兩個不同零點,且,求

2若對任意,都存在為自然對數(shù)的底數(shù),使得成立,求實數(shù)的取值范圍

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,底面為直角梯形,,,平面底面的中點,是棱上的點,,

1求證:平面平面

2,求二面角的大小

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某大學生在開學季準備銷售一種文具盒進行試創(chuàng)業(yè),在一個開學季內(nèi),每售出1盒該產(chǎn)品獲利潤50元,未售出的產(chǎn)品,每盒虧損30元根據(jù)歷史資料,得到開學季市場需求量的頻率分布直方圖,如圖所示該同學為這個開學季購進了160盒該產(chǎn)品,以單位:盒,表示這個開學季內(nèi)的市場需求量,單位:元表示這個開學季內(nèi)經(jīng)銷該產(chǎn)品的利潤

I根據(jù)直方圖估計這個開學季內(nèi)市場需求量的眾數(shù)和中位數(shù);

II表示為的函數(shù);

III根據(jù)直方圖估計利潤不少于4800元的概率

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓經(jīng)過點,圓的圓心在圓的內(nèi)部,且直線被圓所截得的弦長為.點為圓上異于的任意一點,直線軸交于點,直線軸交于點.

(1)求圓的方程;

(2)求證: 為定值;

(3)當取得最大值時,求

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某廠生產(chǎn)產(chǎn)品的年固定成本為250萬元,每生產(chǎn)千件需另投入成本萬元,當年產(chǎn)量不足80千件時(萬元);當年產(chǎn)量不小于80千件時(萬元),每千件產(chǎn)品的售價為50萬元,該廠生產(chǎn)的產(chǎn)品能全部售完.

(1)寫出年利潤萬元關于(千件)的函數(shù)關系;

(2)當年產(chǎn)量為多少千件時該廠當年的利潤最大?

查看答案和解析>>

同步練習冊答案