(本小題滿分l4分)
已知函數(shù)f(x)=ax3+bx2-3x在x=±1處取得極值.
(Ⅰ)求函數(shù)f(x)的解析式;
(Ⅱ)求證:對(duì)于區(qū)間[-1,1]上任意兩個(gè)自變量的值x1,x2,都有|f(x1)-f(x2)|≤4;
(Ⅲ)若過點(diǎn)A(1,m)(m≠-2)可作曲線y=f(x)的三條切線,求實(shí)數(shù)m的取值范圍.
解: (I)f′(x)=3ax2+2bx-3,依題意,f′(1)=f′(-1)=0,

解得a=1,b=0.
∴f(x)=x3-3x.
(II)∵f(x)=x3-3x,∴f′(x)=3x2-3=3(x+1)(x-1),
當(dāng)-1<x<1時(shí),f′(x)<0,故f(x)在區(qū)間[-1,1]上為減函數(shù),
fmax(x)=f(-1)=2,fmin(x)=f(1)=-2
∵對(duì)于區(qū)間[-1,1]上任意兩個(gè)自變量的值x1,x2,
都有|f(x1)-f(x2)|≤|fmax(x) -fmin(x)|
|f(x1)-f(x2)|≤|fmax(x)-fmin(x)|=2-(-2)=4
(III)f′(x)=3x2-3=3(x+1)(x-1),
∵曲線方程為y=x3-3x,∴點(diǎn)A(1,m)不在曲線上.
設(shè)切點(diǎn)為M(x0,y0),則點(diǎn)M的坐標(biāo)滿足
,故切線的斜率為

整理得.
∵過點(diǎn)A(1,m)可作曲線的三條切線,
∴關(guān)于x0方程=0有三個(gè)實(shí)根.
設(shè)g(x­0)= ,則g′(x0)=6,
由g′(x0)=0,得x0=0或x0­=1.
∴g(x0)在(-∞,0),(1,+∞)上單調(diào)遞增,在(0,1)上單調(diào)遞減.
∴函數(shù)g(x0)= 的極值點(diǎn)為x0=0,x0=1
∴關(guān)于x0方程=0有三個(gè)實(shí)根的充要條件是
,解得-3<m<-2.
故所求的實(shí)數(shù)a的取值范圍是-3<m<-2.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知對(duì)任意實(shí)數(shù)x,都有f(-x)=-f(x),g(-x)=g(x),且x>0時(shí) ,f′(x)>0,g′(x)>0,則x<0時(shí)(  )
A.f′(x)>0,g′(x)>0 B.f′(x)>0,g′(x)<0
C.f′(x)<0,g′(x)>0D.f′(x)<0,g′(x)<0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

函數(shù)的值為( )
A.B.C.D.18

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

若函數(shù)f(x)在定義域R內(nèi)可導(dǎo),f(2+x)=f(2-x),且當(dāng)x∈(-∞,2)時(shí),(x-2)>0.設(shè)a=f(1),,c=f(4),則a,b,c的大小為       .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

,則的解集為(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)設(shè)x=1和x=2是函數(shù)f(x)=alnx+bx2+x的兩個(gè)極值點(diǎn)
(1)求a,b的值
(2)求f(x)的單調(diào)區(qū)間。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)函數(shù)是可導(dǎo)的函數(shù),若滿足,則必有
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知函數(shù),函數(shù)處的切線方程為              ;

查看答案和解析>>

同步練習(xí)冊(cè)答案