A. | $\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1 | B. | $\frac{{x}^{2}}{3}$+$\frac{{y}^{2}}{4}$=1 | C. | x2+$\frac{{y}^{2}}{3}$=1 | D. | $\frac{{x}^{2}}{3}$+y2=1 |
分析 設橢圓方程:$\frac{{y}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}=1$(a>b>0),c=1,根據(jù)|F1F2|是|PF1|與|PF2|的等差中項,可得2|F1F2|=|PF1|+|PF2|,且|F1F2|=2c,|PF1|+|PF2|=2a,就可求出a,b的值,再判斷焦點所在坐標軸,就可得到橢圓方程.
解答 解:橢圓的焦點F1(0,-1),F(xiàn)2(0,1),橢圓的焦點在y軸上,設橢圓方程:$\frac{{y}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}=1$(a>b>0),c=1,
∵|F1F2|是|PF1|與|PF2|的等差中項,
∴2|F1F2|=|PF1|+|PF2|,
∴2|F1F2|=|PF1|+|PF2|
又∵|F1F2|=2c,|PF1|+|PF2|=2a,∴4c=2a,a=2c
∴a=2,b2=a2-c2=3,
又∵橢圓的焦點在y軸上,
∴橢圓方程為$\frac{{x}^{2}}{3}+\frac{{y}^{2}}{4}=1$.
故選B.
點評 本題考查橢圓的標準方程及簡單幾何性質,考查等差數(shù)列的性質,考查計算能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com