【題目】已知橢圓的中心在原點(diǎn),為橢圓的一個(gè)焦點(diǎn),離心率,過作兩條互相垂直的直線,, 與橢圓交于兩點(diǎn),與橢圓交于兩點(diǎn),且四點(diǎn)在橢圓上逆時(shí)針分布.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)求四邊形面積的最大值與最小值的比值.
【答案】(1)(2)
【解析】
(1)根據(jù)題干條件得到a,b,c的值進(jìn)而得到方程;(2)根據(jù)題意,分直線的斜率存在、不存在兩種情況討論,借助根與系數(shù)的關(guān)系分析可得四邊形ABCD面積,綜合即可得答案.
根據(jù)題意得:
(1) c=1,e==,所以a=2,b=,所以橢圓方程為+=1
(2)當(dāng)直線l1、l2斜率有不存在的,不妨設(shè)直線l1:x=0,直線l2:y=1
|AC|=2a=4,|BD|==3,設(shè)四邊形ABCD的面積為S,則S=|AC||BD|=6
當(dāng)直線l1、l2斜率均存在時(shí),不妨設(shè)l1:y=kx+1,直線l2:y= ()x+1
將l1和橢圓聯(lián)立化簡得:(3k2+4)x2+6kx-9=0
=36k2+36(3k2+4)>0,設(shè)A(x1,y1)、C(x2,y2), x1+x2= x1x2=
|AC|===
同理:|BD|==
S=|AC||BD|==
設(shè)t= (0,1),k2=1,S==
t2+t+12(12,], 所以S[,6)
綜上所述,Smax=6 ,Smin=,=
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某地區(qū)積極發(fā)展電商,通過近些年工作的開展在新農(nóng)村建設(shè)和扶貧過程中起到了非常重要的作用,促進(jìn)了農(nóng)民生活富裕,為了更好地了解本地區(qū)某一特色產(chǎn)品的宣傳費(fèi) (千元)對銷量 (千件)的影響,統(tǒng)計(jì)了近六年的數(shù)據(jù)如下:
(1)若近6年的宣傳費(fèi)與銷量呈線性分布,由前5年數(shù)據(jù)求線性回歸直線方程,并寫出的預(yù)測值;
(2)若利潤與宣傳費(fèi)的比值不低于20的年份稱為“吉祥年”,在這6個(gè)年份中任意選2個(gè)年份,求這2個(gè)年份均為“吉祥年”的概率
附:回歸方程的斜率與截距的最小二乘法估計(jì)分別為,
,其中, 為, 的平均數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),是奇函數(shù).
(1)求實(shí)數(shù)m的值;
(2)畫出函數(shù)的圖象,并根據(jù)圖象求解下列問題;
①寫出函數(shù)的值域;
②若函數(shù)在區(qū)間上單調(diào)遞增,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】從某校隨機(jī)抽取200名學(xué)生,獲得了他們一周課外閱讀時(shí)間(單位:h)的數(shù)據(jù),整理得到數(shù)據(jù)的頻數(shù)分布表和頻率分布直方圖(如圖).
編 號 | 分 組 | 頻 數(shù) |
1 | [0,2) | 12 |
2 | [2,4) | 16 |
3 | [4,6) | 34 |
4 | [6,8) | 44 |
續(xù) 表
編 號 | 分 組 | 頻 數(shù) |
5 | [8,10) | 50 |
6 | [10,12) | 24 |
7 | [12,14) | 12 |
8 | [14,16) | 4 |
9 | [16,18] | 4 |
合計(jì) | 200 |
(1)從該校隨機(jī)選取一名學(xué)生,試估計(jì)這名學(xué)生該周課外閱讀時(shí)間少于12 h的概率;
(2)求頻率分布直方圖中的a,b的值;
(3)假設(shè)同一組中的每個(gè)數(shù)據(jù)可用該組區(qū)間的中點(diǎn)值代替,試估計(jì)樣本中的200名學(xué)生該周課外閱讀時(shí)間的平均數(shù)在第幾組.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知各項(xiàng)均為正數(shù)數(shù)列的前項(xiàng)和滿足.
(1)求數(shù)列的通項(xiàng)公式;;
(2)若數(shù)列滿足,求數(shù)列的前項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了了解《中華人民共和國道路交通安全法》在學(xué)生中的普及情況,調(diào)查部門對某校6名學(xué)生進(jìn)行問卷調(diào)查,6人得分情況為:5,6,7,8,9,10.把這6名學(xué)生的得分看成一個(gè)總體.
(1)求該總體的平均數(shù);
(2)用簡單隨機(jī)抽樣方法從這6名學(xué)生中抽取2名,他們的得分組成一個(gè)樣本.求該樣本平均數(shù)與總體平均數(shù)之差的絕對值不超過0.5的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(文)(2017·衡水二模)某商場在元旦舉行購物抽獎促銷活動,規(guī)定顧客從裝有編號0,1,2,3,4的五個(gè)相同小球的抽獎箱中一次任意摸出兩個(gè)小球,若取出的兩個(gè)小球的編號之和等于7則中一等獎,等于6或5則中二等獎,等于4則中三等獎,其余結(jié)果為不中獎.
(1)求中二等獎的概率.
(2)求不中獎的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線,則下列結(jié)論正確的是( )
A.直線的傾斜角是B.若直線則
C.點(diǎn)到直線的距離是D.過與直線平行的直線方程是
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com