【題目】如圖,在四棱錐中,四邊形是矩形, , 分別是, 中點(diǎn),

)求證: 平面

)求證: 平面

)求證:平面平面

【答案】見(jiàn)解析見(jiàn)解析見(jiàn)解析

【解析】試題分析:(Ⅰ)連接BD,交ACO,連接OE,則OM∥PB,利用線面平行的判定定理證明:PB∥平面MAC;(Ⅱ)證明PE⊥AD,利用PE⊥BE,BE∩AD=E,證明:PE⊥平面ABCD;(Ⅲ)證明AC⊥平面PBE,即可證明:平面MAC⊥平面PBE.

試題解析:

Ⅰ)連接,交,連接,則,

平面,

平面;

的中點(diǎn),

, ,

平面

平面, 平面,

,

, ,四邊形是矩形, 中點(diǎn),

,

,

平面

平面,

平面平面

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校高三某班的一次測(cè)試成績(jī)的頻率分布表以及頻率分布直方圖中的部分?jǐn)?shù)據(jù)如下,請(qǐng)根據(jù)此解答如下問(wèn)題:

(1)求班級(jí)的總?cè)藬?shù);
(2)將頻率分布表及頻率分布直方圖的空余位置補(bǔ)充完整;
(3)若要從分?jǐn)?shù)在[80,100)之間的試卷中任取兩份分析學(xué)生失分情況,在抽取的試卷中,求至少有一份分?jǐn)?shù)在[90,100)之間的概率.

分組

頻數(shù)

頻率

[50,60)

0.08

[60,70)

7

[70,80)

10

[80,90)

[90,100)

2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知F1 , F2分別是雙曲線 =1(a>0,b>0)的左,右焦點(diǎn),點(diǎn)F1關(guān)于漸近線的對(duì)稱點(diǎn)恰好在以F2為圓心,|OF2|(O為坐標(biāo)原點(diǎn))為半徑的圓上,則該雙曲線的離心率為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】雙十一網(wǎng)購(gòu)狂歡,快遞業(yè)務(wù)量猛增.甲、乙兩位快遞員日到日每天送件數(shù)量的莖葉圖如圖所示.

)根據(jù)莖葉圖判斷哪個(gè)快遞員的平均送件數(shù)量較多(寫(xiě)出結(jié)論即可);

)求甲送件數(shù)量的平均數(shù);

)從乙送件數(shù)量中隨機(jī)抽取個(gè),求至少有一個(gè)送件數(shù)量超過(guò)甲的平均送件數(shù)量的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù)y=Asin(ωx+φ)在一個(gè)周期內(nèi)的圖象如圖,此函數(shù)的解析式為(
A.y=2sin(2x+
B.y=2sin(2x+
C.y=2sin(
D.y=2sin(2x﹣

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義在R上的函數(shù)f(x)的圖象關(guān)于點(diǎn)(﹣ ,0)成中心對(duì)稱,且對(duì)任意的實(shí)數(shù)x都有 ,f(﹣1)=1,f(0)=﹣2,則f(1)+f(2)+…+f(2 017)=(
A.0
B.﹣2
C.1
D.﹣4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)在其定義區(qū)間[a,b]上滿足①f(x)>0;②f′(x)<0;③對(duì)任意的x1 , x2∈[a,b],式子 恒成立.記S1= f(x)dx,S2= (b﹣a),S3=f(b)(b﹣a),則S1 , S2 , S3的大小關(guān)系為 . (按由小到大的順序)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù))是定義在上的奇函數(shù).

(1)求的值;

(2)求函數(shù)的值域;

(3)當(dāng)時(shí), 恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=Acos( + ),x∈R,且f( )=
(1)求A的值;
(2)設(shè)α,β∈[0, ],f(4α+ π)=﹣ ,f(4β﹣ π)= ,求cos(α+β)的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案