【題目】在平面直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),以軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為,直線與曲線相交于兩點(diǎn),與軸相交于點(diǎn).
(1)求直線的普通方程和曲線的直角坐標(biāo)方程;
(2)求的值.
【答案】(1),(2)
【解析】
(1)消去參數(shù)可得直線的普通方程,利用極坐標(biāo)與直角坐標(biāo)的轉(zhuǎn)化公式可得曲線C的直角坐標(biāo)方程;
(2)聯(lián)立直線的參數(shù)方程和曲線的直角坐標(biāo)方程,結(jié)合直線參數(shù)方程的幾何意義和韋達(dá)定理即可求得的值.
(1)直線的參數(shù)方程為,(t為參數(shù))
∴消去參數(shù)后,直線的普通方程為,
的極坐標(biāo)方程為,
∴,∴,
整理得,曲線C的普通方程為.
(2)設(shè)兩點(diǎn)對(duì)應(yīng)的參數(shù)分別為,
將直線方程(t為參數(shù)),代入曲線C:,
得,,
∴,
∴=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下邊的折線圖給出的是甲、乙兩只股票在某年中每月的收盤價(jià)格,已知股票甲的極差是6.88元,標(biāo)準(zhǔn)差為2.04元;股票乙的極差為27.47元,標(biāo)準(zhǔn)差為9.63元,根據(jù)這兩只股票在這一年中的波動(dòng)程度,給出下列結(jié)論:①股票甲在這一年中波動(dòng)相對(duì)較小,表現(xiàn)的更加穩(wěn)定;②購買股票乙風(fēng)險(xiǎn)高但可能獲得高回報(bào);③股票甲的走勢相對(duì)平穩(wěn),股票乙的股價(jià)波動(dòng)較大;④兩只般票在全年都處于上升趨勢.其中正確結(jié)論的個(gè)數(shù)是( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某工廠生產(chǎn)某種產(chǎn)品的年固定成本為200萬元,每生產(chǎn)千件,需另投入成本為,當(dāng)年產(chǎn)量不足80千件時(shí),(萬元).當(dāng)年產(chǎn)量不小于80千件時(shí),(萬元).每件商品售價(jià)為0.05萬元.通過市場分析,該廠生產(chǎn)的商品能全部售完.
(1)寫出年利潤(萬元)關(guān)于年產(chǎn)量(千件)的函數(shù)解析式;
(2)當(dāng)年產(chǎn)量為多少千件時(shí),該廠在這一商品的生產(chǎn)中所獲利潤最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校體育教研組研發(fā)了一項(xiàng)新的課外活動(dòng)項(xiàng)目,為了解該項(xiàng)目受歡迎程度,在某班男女中各隨機(jī)抽取20名學(xué)生進(jìn)行調(diào)研,統(tǒng)計(jì)得到如下列聯(lián)表:
附:參考公式及數(shù)據(jù)
(1)在喜歡這項(xiàng)課外活動(dòng)項(xiàng)目的學(xué)生中任選1人,求選到男生的概率;
(2)根據(jù)題目要求,完成2×2列聯(lián)表,并判斷是否有95%的把握認(rèn)為“喜歡該活動(dòng)項(xiàng)目與性別有關(guān)”?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】獨(dú)立性檢驗(yàn)中,假設(shè):運(yùn)動(dòng)員受傷與不做熱身運(yùn)動(dòng)沒有關(guān)系.在上述假設(shè)成立的情況下,計(jì)算得的觀測值.下列結(jié)論正確的是( )
附:
0.10 | 0.05 | 0.010 | 0.005 | |
2.706 | 3.841 | 6.635 | 7.879 |
A. 在犯錯(cuò)誤的概率不超過0.01的前提下,認(rèn)為運(yùn)動(dòng)員受傷與不做熱身運(yùn)動(dòng)有關(guān)
B. 在犯錯(cuò)誤的概率不超過0.01的前提下,認(rèn)為運(yùn)動(dòng)員受傷與不做熱身運(yùn)動(dòng)無關(guān)
C. 在犯錯(cuò)誤的概率不超過0.005的前提下,認(rèn)為運(yùn)動(dòng)員受傷與不做熱身運(yùn)動(dòng)有關(guān)
D. 在犯錯(cuò)誤的概率不超過0.005的前提下,認(rèn)為運(yùn)動(dòng)員受傷與不做熱身運(yùn)動(dòng)無關(guān)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在四棱錐中,底面四邊形ABCD是菱形,對(duì)角線AC與BD交于點(diǎn)O,.
求證:平面平面PBD;
若,,,E為線段PA的中點(diǎn),求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù).
(1)試討論函數(shù)的單調(diào)性;
(2)設(shè),記,當(dāng)時(shí),若方程有兩個(gè)不相等的實(shí)根, ,證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線E:上一點(diǎn)M到焦點(diǎn)F的距離為5.
(1)求拋物線E的方程;
(2)直線與圓C:相切且與拋物線E相交于A,B兩點(diǎn),若△AOB的面積為4(O為坐標(biāo)原點(diǎn)),求直線的方程.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com