已知x+2y-3=0,則
(x-2)2+(y+1)2
的最小值是
 
考點(diǎn):函數(shù)的最值及其幾何意義
專題:數(shù)形結(jié)合,直線與圓
分析:根據(jù)
(x-2)2+(y+1)2
的幾何意義為:直線x+2y-3=0上的點(diǎn)(x,y)與(2,-1)的距離,轉(zhuǎn)化為:最小值是點(diǎn)(2,-1)到直線x+2y-3=0的距離.
解答: 解:∵
(x-2)2+(y+1)2
的幾何意義為:直線x+2y-3=0上的點(diǎn)(x,y)與(2,-1)的距離,
∴則
(x-2)2+(y+1)2
的最小值是點(diǎn)(2,-1)到直線x+2y-3=0的距離,
d=
|2-2-3|
12+22
=
3
5
5

故答案為:
3
5
5
點(diǎn)評:本題考查直線的方程,兩點(diǎn)距離公式的運(yùn)用轉(zhuǎn)化:直線與點(diǎn)的距離公式,屬于容易題,難度不大.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線的方程為x2-
y2
3
=1,直線m的方程為x=
1
2
,過雙曲線的右焦點(diǎn)F的直線l與雙曲線的右支相交于點(diǎn)P,Q兩點(diǎn),以PQ為直徑的圓與直線m相交于M,N,記劣弧MN的長度為n,則
n
|PQ|
的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)直線l:y=2x+2,若l與橢圓x2+
y2
4
=1的交點(diǎn)為A、B,點(diǎn)P為橢圓上的動點(diǎn),則使△PAB的面積為
2
-1的點(diǎn)P的個數(shù)為( 。
A、0B、1C、2D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

平面α與平面β平行的條件可以是( 。
A、α內(nèi)有無窮多條直線與β平行
B、α內(nèi)的任何直線都與β平行
C、直線a?α,直線b?β,且a∥β,b∥α
D、直線a?α,直線a∥β

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知中心在坐標(biāo)原點(diǎn),焦點(diǎn)在x軸上的橢圓,離心率
6
3
且過點(diǎn)(
5
,0),過定點(diǎn)C(-1,0)的動直線與該橢圓相交于A、B兩點(diǎn).
(1)若線段AB中點(diǎn)的橫坐標(biāo)是-
1
2
,求直線AB的方程;
(2)設(shè)x軸上是否存在點(diǎn)M,使
MA
MB
為常數(shù)?若存在,求出點(diǎn)M的坐標(biāo),若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=f(x)對任意非零實(shí)數(shù)x,恒有f(x1x2)=f(x1)+f(x2),
(1)求f(1),f(-1)
(2)若f(4)=2,求f(
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求當(dāng)
a
、
b
滿足什么條件時,|
a
+
b
|=|
a
-
b
|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)α是第二象限角,且sinα=
3
5
,求sin(
π
6
-2α)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
3x
ax+b
,f(1)=1,f(
1
2
)=
3
4
,數(shù)列{xn}滿足x1=
3
2
,xn+1=f(xn).
(1)求x2,x3的值;
(2)求數(shù)列{xn}的通項(xiàng)公式;
(3)證明:
x1
3
+
x2
32
+…+
xn
3n
3
4

查看答案和解析>>

同步練習(xí)冊答案