函數(shù)y=f(x)的反函數(shù)y=f-1(x)的圖象與y軸交于點(diǎn)P(0,2)(如圖所示),則方程f(x)=0在[1,4]上的根是x=( )

A.4
B.3
C.2
D.1
【答案】分析:根據(jù)原函數(shù)和反函數(shù)的圖象關(guān)于y=x對(duì)稱,由題知,反函數(shù)的圖象與y軸的交點(diǎn),進(jìn)而可知原函數(shù)的圖象在x軸上的交點(diǎn),繼而得到方程的根.
解答:解:∵函數(shù)y=f(x)的反函數(shù)y=f-1(x)的圖象與y軸交于點(diǎn)P(0,2),
∵原函數(shù)和反函數(shù)的圖象關(guān)于y=x對(duì)稱,
∴原函數(shù)的圖象在x軸上的交點(diǎn)為(2,0),
∴f(x)=0的根是x=2,
故選C.
點(diǎn)評(píng):本題主要考查反函數(shù)的知識(shí)點(diǎn),根據(jù)互為反函數(shù)的知識(shí)點(diǎn),原函數(shù)與反函數(shù)關(guān)于y=x對(duì)稱,知道反函數(shù)與y軸的交點(diǎn),則就知道原函數(shù)與x的交點(diǎn),進(jìn)而得到方程的解,反函數(shù)考點(diǎn)是高考的?键c(diǎn),希望同學(xué)們熟練掌握.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

由函數(shù)y=f(x)確定數(shù)列{an},an=f(n),若函數(shù)y=f(x)的反函數(shù)y=f-1(x)能確定數(shù)列{bn},bn=f-1(n),則稱數(shù)列{bn}是數(shù)列{an}的“反數(shù)列”.
(1)若函數(shù)f(x)=2
x
確定數(shù)列{an}的反數(shù)列為{bn},求{bn}的通項(xiàng)公式;
(2)對(duì)(1)中{bn},不等式
1
bn+1
+
1
bn+2
+…+
1
b2n
1
2
loga(1-2a)
對(duì)任意的正整數(shù)n恒成立,求實(shí)數(shù)a的取值范圍;
(3)設(shè)cn=
1+(-1)λ
2
3n+
1-(-1)λ
2
•(2n-1)(λ為正整數(shù))
,若數(shù)列{cn}的反數(shù)列為{dn},{cn}與{dn}的公共項(xiàng)組成的數(shù)列為{tn},求數(shù)列{tn}前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

由函數(shù)y=f(x)確定數(shù)列{an},an=f(n),函數(shù)y=f(x)的反函數(shù)y=f-1(x)能確定數(shù)列bn,bn=f-1(n)若對(duì)于任意n∈N*都有bn=an,則稱數(shù)列{bn}是數(shù)列{an}的“自反函數(shù)列”
(1)設(shè)函數(shù)f(x)=
px+1
x+1
,若由函數(shù)f(x)確定的數(shù)列{an}的自反數(shù)列為{bn},求an;
(2)已知正整數(shù)列{cn}的前項(xiàng)和sn=
1
2
(cn+
n
cn
).寫(xiě)出Sn表達(dá)式,并證明你的結(jié)論;
(3)在(1)和(2)的條件下,d1=2,當(dāng)n≥2時(shí),設(shè)dn=
-1
anSn2
,Dn是數(shù)列{dn}的前n項(xiàng)和,且Dn>loga(1-2a)恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

由函數(shù)y=f(x)確定數(shù)列{an},an=f(n),函數(shù)y=f(x)的反函數(shù)y=f-1(x)能確定數(shù)列{bn},bn=f-1(n),若對(duì)于任意n?N*,都有bn=an,則稱數(shù)列{bn}是數(shù)列{an}的“自反數(shù)列”.
(1)若函數(shù)f(x)=
px+1
x+1
確定數(shù)列{an}的自反數(shù)列為{bn},求an;
(2)在(1)條件下,記
n
1
x1
+
1
x2
+…
1
xn
為正數(shù)數(shù)列{xn}的調(diào)和平均數(shù),若dn=
2
an+1
-1
,Sn為數(shù)列{dn}的前n項(xiàng)之和,Hn為數(shù)列{Sn}的調(diào)和平均數(shù),求
lim
n→∞
=
Hn
n
;
(3)已知正數(shù)數(shù)列{cn}的前n項(xiàng)之和Tn=
1
2
(Cn+
n
Cn
)
.求Tn表達(dá)式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2007•浦東新區(qū)一模)由函數(shù)y=f(x)確定數(shù)列{an},an=f(n),若函數(shù)y=f(x)的反函數(shù)y=f-1(x)能確定數(shù)列{bn},bn=f-1(n),則稱數(shù)列{bn}是數(shù)列{an}的“反數(shù)列”.
(1)若函數(shù)f(x)=2
x
確定數(shù)列{an}的反數(shù)列為{bn},求bn;
(2)設(shè)cn=3n,數(shù)列{cn}與其反數(shù)列{dn}的公共項(xiàng)組成的數(shù)列為{tn}
(公共項(xiàng)tk=cp=dq,k、p、q為正整數(shù)).求數(shù)列{tn}前10項(xiàng)和S10
(3)對(duì)(1)中{bn},不等式
1
bn+1
+
1
bn+2
+…+
1
b2n
1
2
loga(1-2a)
對(duì)任意的正整數(shù)n恒成立,求實(shí)數(shù)a的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010年上海市高三上學(xué)期期中考試數(shù)學(xué)卷 題型:解答題

由函數(shù)y=f(x)確定數(shù)列{an},an=f(n),函數(shù)y=f(x)的反函數(shù)y=f -1(x)能確定數(shù)列{bn},bn= f –1(n),若對(duì)于任意nÎN*,都有bn=an,則稱數(shù)列{bn}是數(shù)列{an}的“自反數(shù)列”.

   (1)若函數(shù)f(x)=確定數(shù)列{an}的自反數(shù)列為{bn},求an;

   (2)已知正數(shù)數(shù)列{cn}的前n項(xiàng)之和Sn=(cn+).寫(xiě)出Sn表達(dá)式,并證明你的結(jié)論;

   (3)在(1)和(2)的條件下,d1=2,當(dāng)n≥2時(shí),設(shè)dn=,Dn是數(shù)列{dn}的前n項(xiàng)之和,且Dn>log a (1-2a)恒成立,求a的取值范圍.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案