已知橢圓C:(a>b>0).F1,F(xiàn)2分別為橢圓C的左,右焦點,A1,A2分別為橢圓C的左,右頂點.過右焦點F2且垂直于x軸的直線與橢圓C在第一象限的交點為M(,2).

(1)求橢圓C的標(biāo)準(zhǔn)方程;

(2)直線l:x=my+1與橢圓C交于P,Q兩點,直線A1P與A2Q交于點S.當(dāng)直線l變化時,點S是否恒在一條定直線上?若是,求此定直線方程;若不是,請說明理由.

答案:
解析:

  解:(1),.點在橢圓上,

  ,,

  (舍去).

  橢圓的方程為;4分

  (2)當(dāng)軸時,,,又

  ,,聯(lián)立解得

  當(dāng)過橢圓的上頂點時,,

  ,,聯(lián)立解得

  若定直線存在,則方程應(yīng)是;8分

  下面給予證明.

  把代入橢圓方程,整理得,

  成立,記,,則

  ,

  當(dāng)時,縱坐標(biāo)應(yīng)相等,,須

  須,須

  而成立.

  綜上,定直線方程為;14分

  (其它解法酌情給分)


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C:=1(a>b>0),直線l1:=1被橢圓C截得的弦長為2,過橢圓C的右焦點且斜率為3的直線l2被橢圓C截得的弦長是橢圓長軸長的,求橢圓C的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年人教版高考數(shù)學(xué)文科二輪專題復(fù)習(xí)提分訓(xùn)練22練習(xí)卷(解析版) 題型:解答題

已知橢圓C:+=1(a>b>0)的一個頂點為A(2,0),離心率為.直線y=k(x-1)與橢圓C交于不同的兩點M,N.

(1)求橢圓C的方程;

(2)當(dāng)△AMN的面積為,k的值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年人教版高考數(shù)學(xué)文科二輪專題復(fù)習(xí)提分訓(xùn)練22練習(xí)卷(解析版) 題型:選擇題

已知橢圓C:+=1(a>b>0)的左焦點為F,C與過原點的直線相交于A,B兩點,連接AF,BF.|AB|=10,|BF|=8,cosABF=,C的離心率為(  )

(A) (B) (C) (D)

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年廣東省高三8月第一次月考文科數(shù)學(xué)試卷(解析版) 題型:解答題

(本題滿分14分)

已知橢圓C:(a>b>0)的離心率為,短軸一個端點到右焦點的距離為3.

(1)求橢圓C的方程;

(2)過橢圓C上的動點P引圓O:x2+y2=b2的兩條切線PA、PB,A、B分別為切點,試探究橢圓C上是否存在點P,由點P向圓O所引的兩條切線互相垂直?若存在,請求出點P的坐標(biāo);若不存在,請說明理由.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011年遼寧省高二上學(xué)期期末考試數(shù)學(xué)文卷 題型:解答題

(本小題滿分12分)

已知橢圓C:(a>b>0)的離心率為短軸一個端點到右焦點的

距離為.

(Ⅰ)求橢圓C的方程;    

(Ⅱ)設(shè)直線l與橢圓C交于AB兩點,坐標(biāo)原點O到直線l的距離為,求△AOB面積的

最大值.

 

查看答案和解析>>

同步練習(xí)冊答案