【題目】第26屆世界大學(xué)生夏季運(yùn)動(dòng)會(huì)將于2011年8月12日到23日在深圳舉行 ,為了搞好接待工作,組委會(huì)在某學(xué)院招募了12名男志愿者和18名女志愿者。將這30名志愿者的身高編成如右所示的莖葉圖(單位:cm):

若身高在175cm以上(包括175cm)定義為“高個(gè)子”,身高在175cm以下(不包括175cm)定義為“非高個(gè)子”,且只有“女高個(gè)子”才擔(dān)任“禮儀小姐”。

(1)如果用分層抽樣的方法從“高個(gè)子”和“非高個(gè)子”中提取5人,再?gòu)倪@5人中選2人,那么至少有一人是“高個(gè)子”的概率是多少?

(2)若從所有“高個(gè)子”中選3名志愿者,用表示所選志愿者中能擔(dān)任“禮儀小姐”的人數(shù),試寫(xiě)出的分布列,并求的數(shù)學(xué)期望。

【答案】(1);(2)見(jiàn)解析.

【解析】試題分析:(1)根據(jù)莖葉圖,有高個(gè)子”12人,非高個(gè)子”18人,用分層抽樣的方法選中的高個(gè)子2人,非高個(gè)子3人.由此利用對(duì)立事件概率計(jì)算公式能求出至少有一人是高個(gè)子的概率.
(2)依題意,ξ的取值為0,1,2,3.分別求出相應(yīng)的概率,由此能求出ξ的分布列.

試題解析:

(1)根據(jù)莖葉圖,有“高個(gè)子”12人,“非高個(gè)子”18人,

用分層抽樣的方法,每個(gè)人被抽中的概率是,

所以選中的“高個(gè)子”有人,“非高個(gè)子”有人.

用事件表示“至少有一名“高個(gè)子”被選中”,則它的對(duì)立事件表示“沒(méi)有一名“高個(gè)子”被選中”,

 則

因此,至少有一人是“高個(gè)子”的概率是

(2)依題意, 的取值為

 ,   

 ,

 因此, 的分布列如下:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)(1,﹣2)和( ,0)在直線l:ax﹣y﹣1=0(a≠0)的兩側(cè),則直線l的傾斜角的取值范圍是(
A.( ,
B.( ,
C.( ,
D.(0, )∪( ,π)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),

(1)當(dāng)a=1時(shí),求曲線數(shù)在點(diǎn)(1, )處的切線方程;

(2)時(shí),函數(shù)數(shù)的最小值為0,求a的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四棱錐中,底面是邊長(zhǎng)為的菱形,且,側(cè)面為等邊三角形,且與底面垂直, 的中點(diǎn).

(Ⅰ)求證: ;

(Ⅱ)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)

求函數(shù)的單調(diào)區(qū)間;

當(dāng)時(shí),討論函數(shù)圖像的交點(diǎn)個(gè)數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列{an}的前n項(xiàng)和為Sn , 且滿足Sn=n2﹣4n,數(shù)列{bn}中,b1= 對(duì)任意正整數(shù)
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)是否存在實(shí)數(shù)μ,使得數(shù)列{3nbn+μ}是等比數(shù)列?若存在,請(qǐng)求出實(shí)數(shù)μ及公比q的值,若不存在,請(qǐng)說(shuō)明理由;
(3)求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】一個(gè)樣本M的數(shù)據(jù)是x1 , x2 , …,xn , 它的平均數(shù)是5,另一個(gè)樣本N的數(shù)據(jù)x12 , x22 , …,xn2它的平均數(shù)是34.那么下面的結(jié)果一定正確的是(
A.SM2=9
B.SN2=9
C.SM2=3
D.Sn2=3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知{an}是一個(gè)等差數(shù)列且a2+a8=﹣4,a6=2
(1)求{an}的通項(xiàng)公式;
(2)求{an}的前n項(xiàng)和Sn的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在三棱錐中, ⊥平面, , , , 分別為的中點(diǎn).(19)

(I)求到平面的距離;

(II)在線段上是否存在一點(diǎn),使得平面平面,若存在,試確定的位置,并證明此點(diǎn)滿足要求;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案