不等式a2+2a≤9x+
1
4x
在x∈(0,+∞)上恒成立,
(1)求a的范圍;
(2)求不等式:x2-(a-3)x-3a>0的解集.
考點(diǎn):基本不等式在最值問(wèn)題中的應(yīng)用
專題:綜合題,不等式的解法及應(yīng)用
分析:(1)利用基本不等式求出9x+
1
4x
≥2
9x•
1
4x
=3,從而不等式等價(jià)于a2+2a≤3,即可求a的范圍;
(2)根據(jù)(1)的結(jié)論,即可求解.
解答: 解:(1)∵9x+
1
4x
≥2
9x•
1
4x
=3,
∴不等式a2+2a≤9x+
1
4x
在x∈(0,+∞)上恒成立,等價(jià)于a2+2a≤3,
∴-3≤a≤1;
(2)x2-(a-3)x-3a>0,即(x+3)(x-a)>0
∵-3≤a≤1,解集為{x|x<a或x>3}.
點(diǎn)評(píng):本題考查基本不等式在最值問(wèn)題中的應(yīng)用,考查學(xué)生的計(jì)算能力,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知不等式組
x-y+k≥0
3x-y-6≤0
x+y+6≥0
表示的平面區(qū)域恰好被圓C:(x-3)2+(y-3)2=r2所覆蓋,則實(shí)數(shù)k的值是(  )
A、3B、4C、5D、6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x-1-alnx.
(Ⅰ)若a=2,求曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程;
(Ⅱ)討論f(x)的單調(diào)性;
(Ⅲ)若a<0,且對(duì)任意x1,x2∈(0,1],都有|f(x1)-f(x2)|≤4|
1
x1
-
1
x2
|,求a的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(理) 定義在(-1,1)上的偶函數(shù)f(x)在(0,1)上是減函數(shù),且滿足f(a-1)-f(2-a)<0,則實(shí)數(shù)a的取值范圍
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

不等式x2+4x+4≥0的解集
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=loga(x+2)+4恒過(guò)定點(diǎn)
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

我國(guó)是世界上嚴(yán)重缺水的國(guó)家之一.為了增強(qiáng)居民的節(jié)水意識(shí),某市自來(lái)水公司對(duì)居民用水采用以戶為單位分段計(jì)費(fèi)辦法收費(fèi).即每月用10噸水以內(nèi)(包括10噸)的用戶,每噸收水費(fèi)3元;每一個(gè)月用水超過(guò)10噸的用戶,其中10噸水不分仍按每噸3元收費(fèi),超過(guò)10噸的部分,按每噸5元收費(fèi).設(shè)一戶居民月用水x噸,應(yīng)收水費(fèi)f(x)元,
(1)寫出f(x)與x之間的函數(shù)關(guān)系式;
(2)已知居民甲上個(gè)月比居民乙多用4噸水,兩家共收水費(fèi)100元,求他們上月分別用水多少噸?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若函數(shù)f(x)=|3x-1|+ax+3有最小值,則實(shí)數(shù)a的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=xex在點(diǎn)(1,f(1))處的切線的斜率是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案