【題目】利用隨機數(shù)表法對一個容量為500編號為000,001,002,…,499的產(chǎn)品進行抽樣檢驗,抽取一個容量為10的樣本,若選定從第12行第5列的數(shù)開始向右讀數(shù),(下面摘取了隨機數(shù)表中的第11行至第15行),根據(jù)下圖,讀出的第3個數(shù)是(
A.841
B.114
C.014
D.146

【答案】B
【解析】解:最先讀到的1個的編號是389,
向右讀下一個數(shù)是775,775它大于499,故舍去,
再下一個數(shù)是841,舍去,
再下一個數(shù)是607,舍去,
再下一個數(shù)是449,
再下一個數(shù)是983.舍去,
再下一個數(shù)是114.
讀出的第3個數(shù)是114.
故選B.
【考點精析】本題主要考查了簡單隨機抽樣的相關(guān)知識點,需要掌握每個樣本單位被抽中的可能性相同(概率相等),樣本的每個單位完全獨立,彼此間無一定的關(guān)聯(lián)性和排斥性.簡單隨機抽樣是其它各種抽樣形式的基礎(chǔ),通常只是在總體單位之間差異程度較小和數(shù)目較少時,才采用這種方法才能正確解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱錐P﹣ABC中,△ABC是等邊三角形,D是AC的中點,PA=PC,二面角P﹣AC﹣B的大小為60°;

(1)求證:平面PBD⊥平面PAC;
(2)求AB與平面PAC所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】乒乓球單打比賽在甲、乙兩名運動員間進行,比賽采用7局4勝制(即先勝4局者獲勝,比賽結(jié)束),假設(shè)兩人在每一局比賽中獲勝的可能性相同.
(1)求甲以4比1獲勝的概率;
(2)求乙獲勝且比賽局數(shù)多于5局的概率;
(3)求比賽局數(shù)的分布列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點A(1,3)B(3,1),C(﹣1,0)求:
(1)求BC及BC邊上的中線所在直線的方程;
(2)求BC邊上的垂直平分線所在直線方程;
(3)求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】隨著人們對環(huán)境關(guān)注度的提高,綠色低碳出行越來越受到市民重視. 為此貴陽市建立了公共自行車服務(wù)系統(tǒng),市民憑本人二代身份證到自行車服務(wù)中心辦理誠信借車卡借車,初次辦卡時卡內(nèi)預(yù)先贈送20積分,當積分為0時,借車卡將自動鎖定,限制借車,用戶應(yīng)持卡到公共自行車服務(wù)中心以1元購1個積分的形式再次激活該卡,為了鼓勵市民租用公共自行車出行,同時督促市民盡快還車,方便更多的市民使用,公共自行車按每車每次的租用時間進行扣分收費,具體扣分標準如下:

①租用時間不超過1小時,免費;

②租用時間為1小時以上且不超過2小時,扣1分;

③租用時間為2小時以上且不超過3小時,扣2分;

④租用時間超過3小時,按每小時扣2分收費(不足1小時的部分按1小時計算).

甲、乙兩人獨立出行,各租用公共自行車一次,兩人租車時間都不會超過3小時,設(shè)甲、乙租用時間不超過1小時的概率分別是0.4和0.5;租用時間為1小時以上且不超過2小時的概率分別是0.4和0.3.

(1)求甲、乙兩人所扣積分相同的概率;

(2)設(shè)甲、乙兩人所扣積分之和為隨機變量,求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對一批產(chǎn)品的長度(單位:毫米)進行抽樣檢測,如圖為檢測結(jié)果的頻率分布直方圖.根據(jù)標準,產(chǎn)品長度在區(qū)間[20,25)上為一等品,在區(qū)間[15,20)和[25,30)上為二等品,在區(qū)間[10,15)和[30,35]上為三等品.用頻率估計概率,現(xiàn)從該批產(chǎn)品中隨機抽取1件,則其為二等品的概率是(

A.0.09
B.0.20
C.0.25
D.0.45

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)|xa|

(1)若不等式f(x)3的解集為{x|1x5},求實數(shù)a的值;

(2)(1)的條件下,f(x)f(x5)m對一切實數(shù)x恒成立,求實數(shù)m的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4 坐標系與參數(shù)方程

已知函數(shù),曲線在點處的切線為,若時,有極值.

(1)求的值;

(2)求上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知曲線的極坐標方程為,曲線的參數(shù)方程為,( 為參數(shù)).

(1)將兩曲線化成普通坐標方程;

(2)求兩曲線的公共弦長及公共弦所在的直線方程.

查看答案和解析>>

同步練習(xí)冊答案