【題目】已知復數(shù)z1 , z2滿足|z1|=|z2|=1,|z1﹣z2|= ,則|z1+z2|等于 .
【答案】1
【解析】解:∵復數(shù)z1 , z2滿足|z1|=1,|z2|=1,可令z1=cosA+isinA,z2=cosB+isinB
∵|z1﹣z2|= ,故有(cosA﹣cosB)2+(sinA﹣sinB)2=3,整理得2cosAcosB+2sinAsinB=﹣1
又|z1+z2|2=(cosA+cosB)2+(sinA+sinB)2=2+2cosAcosB+2sinAsinB=1
∴|z1+z2|=1
所以答案是:1.
【考點精析】關(guān)于本題考查的復數(shù)的模(絕對值),需要了解復平面內(nèi)復數(shù)所對應(yīng)的點到原點的距離,是非負數(shù),因而兩復數(shù)的模可以比較大。粡蛿(shù)模的性質(zhì):(1)(2)(3)若為虛數(shù),則才能得出正確答案.
科目:高中數(shù)學 來源: 題型:
【題目】已知全集U=R,集合A={x|x<﹣4,或x>1},B={x|﹣3≤x﹣1≤2},
(1)求A∩B、(UA)∪(UB);
(2)若集合M={x|2k﹣1≤x≤2k+1}是集合A的子集,求實數(shù)k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】若方程x2+ax+2b=0的一個根在(0,1)內(nèi),另一個根在(1,2)內(nèi),則 的取值范圍是( )
A.[﹣2,1)
B.(﹣2,1)
C.(﹣∞,﹣2)∪(1,+∞)
D.(﹣∞,﹣2]∪[1,+∞)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(1)兩個共軛復數(shù)的差是純虛數(shù);(2)兩個共軛復數(shù)的和不一定是實數(shù);(3)若復數(shù)a+bi(a,b∈R)是某一元二次方程的根,則a﹣bi是也一定是這個方程的根;(4)若z為虛數(shù),則z的平方根為虛數(shù),
其中正確的個數(shù)為( )
A.3
B.2
C.1
D.0
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
在平面直角坐標系中,曲線的普通方程為,曲線的參數(shù)方程為為參數(shù)),以坐標原點為極點, 軸正半軸為極軸建立極坐標系.
(1)求曲線的極坐標方程;
(2)求曲線與焦點的極坐標,其中.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù), 的圖像與的圖像關(guān)于軸對稱,函數(shù),若關(guān)于的不等式恒成立,則實數(shù)的取值范圍為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】函數(shù).
(1)當, 時,求的單調(diào)減區(qū)間;
(2)時,函數(shù),若存在,使得恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在等差數(shù)列{an}中,a2=5,a6=21,記數(shù)列 的前n項和為Sn , 若 對n∈N+恒成立,則正整數(shù)m的最小值為 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】隨著我國經(jīng)濟的發(fā)展,居民的儲蓄存款逐年增長.設(shè)某地區(qū)城鄉(xiāng)居民人民幣儲蓄存款(年底余額)如下表:
年份 | 2010 | 2011 | 2012 | 2013 | 2014 |
時間代號t | 1 | 2 | 3 | 4 | 5 |
儲蓄存款y(千億元) | 5 | 6 | 7 | 8 | 10 |
(1)求y關(guān)于t的回歸方程 .
(2)用所求回歸方程預測該地區(qū)2015年(t=6)的人民幣儲蓄存款.
附:回歸方程 中
.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com