【題目】已知如圖,圓、橢圓均經(jīng)過點(diǎn)M,圓的圓心為,橢圓的兩焦點(diǎn)分別為.
(Ⅰ)分別求圓和橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)過作直線與圓交于、兩點(diǎn),試探究是否為定值?若是定值,求出該定值;若不是,說明理由.
【答案】(Ⅰ), ;(Ⅱ) 為定值,其值為2.
【解析】試題分析:(Ⅰ)通過計(jì)算圓心和半徑得圓的方程,根據(jù)計(jì)算a的值,及焦點(diǎn)得c即可得橢圓方程;
(Ⅱ)由直線和橢圓聯(lián)立,利用韋達(dá)定理,利用坐標(biāo)表示,計(jì)算即可定值.
試題解析:
(Ⅰ)依題意知圓C的半徑,
∴圓C的標(biāo)準(zhǔn)方程為: ;
∵橢圓過點(diǎn)M,且焦點(diǎn)為、,
由橢圓的定義得: ,
即,
∴, ,
∴橢圓E的方程為: .
【其它解法請參照給分】
(Ⅱ)顯然直線的斜率存在,設(shè)為,則的方程為,
由消去得:
,
顯然有解,
設(shè)、,則,
.
故為定值,其值為2.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,設(shè)△ABC的頂點(diǎn)分別為,圓M是△ABC的外接圓,直線的方程是,
(1)求圓M的方程;
(2)證明:直線與圓M相交;
(3)若直線被圓M截得的弦長為3,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨著網(wǎng)絡(luò)的發(fā)展,人們可以在網(wǎng)絡(luò)上購物、玩游戲、聊天、導(dǎo)航等,所以人們對上網(wǎng)流量的需求越來越大。某電信運(yùn)營商推出一款新的“流量包”套餐.為了調(diào)查不同年齡的人是否愿意選擇此款“流量包”套餐,隨機(jī)抽取50個(gè)用戶按年齡分組進(jìn)行訪談,統(tǒng)計(jì)結(jié)果如下表.
組號 | 年齡 | 訪談人數(shù) | 愿意使用 |
1 | [20,30) | 5 | 5 |
2 | [30.40) | 10 | 10 |
3 | [40.50) | 15 | 12 |
4 | [50.60) | 14 | 8 |
5 | [60,70) | 6 | 2 |
(1)若在第2、3、4組愿意選擇此款“流量包”套餐的人中,用分層抽樣的方法抽取15人,則各組應(yīng)分別抽取多少人?
(2)若從第5組的被調(diào)查者訪談人中隨機(jī)選取2人進(jìn)行追蹤調(diào)查,求2人中至少有1人愿意選擇此款“流量包”套餐的概率.
(3)按以上統(tǒng)計(jì)數(shù)據(jù)填寫下面2×2列聯(lián)表,并判斷以50歲為分界點(diǎn),能否在犯錯(cuò)誤不超過1%的前提下認(rèn)為是否愿意選擇此款“流量包”套餐與人的年齡有關(guān);
年齡不低于50歲的人數(shù) | 年齡低于50歲的人數(shù) | 合計(jì) | |||||
愿意使用的人數(shù) | |||||||
不愿意使用的人數(shù) | |||||||
合計(jì) |
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=是奇函數(shù),且f(2)=.
(1)求實(shí)數(shù)m和n的值;
(2)判斷函數(shù)f(x)在(-∞,0)上的單調(diào)性,并加以證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)對一切實(shí)數(shù)都有 成立,且.
(1)求的值;
(2)求的解析式;
(3)已知,設(shè):當(dāng)時(shí),不等式 恒成立;Q:當(dāng)時(shí),是單調(diào)函數(shù)。如果滿足成立的的集合記為,滿足Q成立的的集合記為,求A∩(CRB)(為全集).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,建立平面直角坐標(biāo)系xOy,x軸在地平面上,y軸垂直于地平面,單位長度為1千米.某炮位于坐標(biāo)原點(diǎn).已知炮彈發(fā)射后的軌跡在方程y=kx- (1+k2)x2(k>0)表示的曲線上,其中k與發(fā)射方向有關(guān).炮的射程是指炮彈落地點(diǎn)的橫坐標(biāo).
(1)求炮的最大射程;
(2)設(shè)在第一象限有一飛行物(忽略其大小),其飛行高度為3.2千米,試問它的橫坐標(biāo)a不超過多少時(shí),炮彈可以擊中它?請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某地區(qū)以“綠色出行”為宗旨開展“共享單車”業(yè)務(wù).該地區(qū)某高級中學(xué)一興趣小組由20名高二級學(xué)生和15名高一級學(xué)生組成,現(xiàn)采用分層抽樣的方法抽取7人,組成一個(gè)體驗(yàn)小組去市場體驗(yàn)“共享單車”的使用.問:
(Ⅰ)應(yīng)從該興趣小組中抽取高一級和高二級的學(xué)生各多少人;
(Ⅱ)已知該地區(qū)有, 兩種型號的“共享單車”,在市場體驗(yàn)中,該體驗(yàn)小組的高二級學(xué)生都租型車,高一級學(xué)生都租型車.
(1)如果從組內(nèi)隨機(jī)抽取3人,求抽取的3人中至少有2人在市場體驗(yàn)過程中租型車的概率;
(2)已知該地區(qū)型車每小時(shí)的租金為1元, 型車每小時(shí)的租金為1.2元,設(shè)為從體驗(yàn)小組內(nèi)隨機(jī)抽取3人得到的每小時(shí)租金之和,求的數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(2016·雅安高一檢測)已知函數(shù)f(x)=2x的定義域是[0,3],設(shè)g(x)=f(2x)-f(x+2),
(1)求g(x)的解析式及定義域;
(2)求函數(shù)g(x)的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】分形幾何學(xué)是數(shù)學(xué)家伯努瓦·曼德爾布羅在世紀(jì)年代創(chuàng)立的一門新的數(shù)學(xué)學(xué)科,它的創(chuàng)立為解決傳統(tǒng)科學(xué)眾多領(lǐng)域的難題提供了全新的思路.按照如圖所示的分形規(guī)律可得如圖乙所示的一個(gè)樹形圖:
若記圖乙中第行白圈的個(gè)數(shù)為,則__________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com