已知函數(shù)若函數(shù)在x = 0處取得極值.
(1) 求實(shí)數(shù)的值;
(2) 若關(guān)于x的方程在區(qū)間[0,2]上恰有兩個(gè)不同的實(shí)數(shù)根,求實(shí)數(shù)的取值范圍;
(3) 證明:對任意的自然數(shù)n,有恒成立.
(1);(2) ;(3)見解析.

試題分析:(1)先有已知條件寫出的解析式,然后求導(dǎo),根據(jù)導(dǎo)數(shù)與函數(shù)極值的關(guān)系得到,解得的值;(2)由構(gòu)造函數(shù),則上恰有兩個(gè)不同的實(shí)數(shù)根等價(jià)于恰有兩個(gè)不同實(shí)數(shù)根,對函數(shù)求導(dǎo),根據(jù)函數(shù)的單調(diào)性與導(dǎo)數(shù)的關(guān)系找到函數(shù)的單調(diào)區(qū)間,再由零點(diǎn)的存在性定理得到,解不等式組即可;(3) 證明不等式,即是證明.對函數(shù)求導(dǎo),利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,找到其在區(qū)間上的最大值,則有成立,那么不等式成立,利用二次函數(shù)的圖像與性質(zhì)可得的單調(diào)性與最小值,根據(jù),那么,所給不等式得證.
試題解析:(1) 由題意知,   2分
時(shí), 取得極值,∴,故,解得
經(jīng)檢驗(yàn)符合題意.                                                       4分
(2)由
 ,得,                          5分

上恰有兩個(gè)不同的實(shí)數(shù)根等價(jià)于恰有兩個(gè)不同實(shí)數(shù)根. ,         7分
當(dāng)時(shí),,于是上單調(diào)遞增;
當(dāng)時(shí),,于是上單調(diào)遞減.依題意有
,即, .9分
(3) 的定義域?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023840941593.png" style="vertical-align:middle;" />,由(1)知
得, (舍去),                 11分
∴當(dāng)時(shí),,單調(diào)遞增;
當(dāng)時(shí),單調(diào)遞減.  ∴在(-1,+∞)上的最大值.
,故 (當(dāng)且僅當(dāng)時(shí),等號成立)  12分
對任意正整數(shù),取得,
 則為增函數(shù),
所以,即恒成立.
對任意的自然數(shù),有恒成立.                  14分
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)函數(shù)f(x)=,g(x)=ln(2ex)(其中e為自然對數(shù)的底數(shù))
(1)求y=f(x)-g(x)(x>0)的最小值;
(2)是否存在一次函數(shù)h(x)=kx+b使得f(x)≥h(x)且h(x)≥g(x)對一切x>0恒成立;若存在,求出一次函數(shù)的表達(dá)式,若不存在,說明理由:
3)數(shù)列{}中,a1=1,=g()(n≥2),求證:<1且

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知為函數(shù)圖象上一點(diǎn),為坐標(biāo)原點(diǎn),記直線的斜率
(1)若函數(shù)在區(qū)間上存在極值,求實(shí)數(shù)的取值范圍;
(2)當(dāng)時(shí),不等式恒成立,求實(shí)數(shù)的取值范圍;
(3)求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù),為函數(shù)的導(dǎo)函數(shù).
(1)設(shè)函數(shù)f(x)的圖象與x軸交點(diǎn)為A,曲線y=f(x)在A點(diǎn)處的切線方程是,求的值;
(2)若函數(shù),求函數(shù)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

當(dāng)a>0時(shí),函數(shù)的圖象大致是(   )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

拋物線處的切線與兩坐標(biāo)軸圍成三角形區(qū)域?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024116520315.png" style="vertical-align:middle;" />(包含三角形內(nèi)部與邊界).若點(diǎn)是區(qū)域內(nèi)的任意一點(diǎn),則的取值范圍是__________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

曲線在點(diǎn)處的切線方程為         

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知函數(shù)處取得極大值,在處取得最小值,滿足,,則的取值范圍是(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知函數(shù)的導(dǎo)函數(shù)為,且滿足關(guān)系式,則的值等于(   )
A.2B.C.D.

查看答案和解析>>

同步練習(xí)冊答案