若定義在R上的奇函數(shù)y=f(x),滿(mǎn)足f(x+1)=f(1-x),則周期為
 
考點(diǎn):函數(shù)的周期性
專(zhuān)題:函數(shù)的性質(zhì)及應(yīng)用
分析:在給出的等式中以x+1替換x,借助于函數(shù)是奇函數(shù)求得函數(shù)的周期.
解答: 解:由f(x+1)=f(1-x),且f(x)為奇函數(shù),得
f(x+1+1)=f(1-x-1)=f(-x)=-f(x),
即f(x+2)=-f(x),
則f(x+4)=-f(x+2)=-[-f(x)]=f(x).
∴f(x)的周期為4.
故答案為:4.
點(diǎn)評(píng):本題考查了函數(shù)奇偶性的性質(zhì),是基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,一個(gè)四面體S-ABC的六條棱長(zhǎng)都為4,E為SA的中點(diǎn),過(guò)點(diǎn)E作平面EFH∥平面SBC.且平面EFH∩平面ABC=FH,則△HFE面積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知直線l:y=-
1
2
x+1,試求:
(1)點(diǎn)P(-2,-1)關(guān)于直線l的對(duì)稱(chēng)點(diǎn)坐標(biāo);
(2)直線l1:y=x-2關(guān)于直線l對(duì)稱(chēng)的直線l2的方程;
(3)直線l關(guān)于點(diǎn)A(1,1)對(duì)稱(chēng)的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

動(dòng)點(diǎn)P到x軸,y軸的距離之比等于非零常數(shù)k,則動(dòng)點(diǎn)P的軌跡方程是( 。
A、y=
x
k
(x≠0)
B、y=kx(x≠0)
C、y=-
x
k
(x≠0)
D、y=±kx(x≠0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}是公差不為零的等差數(shù)列,a1=1,且a1,a2,a4成等比數(shù)列;
(Ⅰ)求通項(xiàng)an;
(Ⅱ)令bn=an+2an,求數(shù)列{bn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=-sin(2ωx-
π
2
)(ω>0)的圖象的一個(gè)對(duì)稱(chēng)中心到最近的對(duì)稱(chēng)軸的距離為
π
4

(1)求ω的值;
(2)求f(x)在區(qū)間[π,
2
]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

解關(guān)于x的不等式loga[a2x-2x(ax+2x+1)+1]>0(其中常數(shù)a>1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}滿(mǎn)足:a1=1,n為正整數(shù),對(duì)任意的n≥2都有an+2anan-1-an-1=0成立.
(1)求證:數(shù)列{
1
an
}
為等差數(shù)列;并求{an}的通項(xiàng)公式;
(2)判斷a3•a6是否為數(shù)列{an}中的項(xiàng),如果是,是第幾項(xiàng)?如果不是,說(shuō)明理由;
(3)設(shè)cn=an•an+1(n∈N*),求數(shù)列{cn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,φ<
π
2
)的一段圖象.
(1)求f(x)的解析式;
(2)求f(x)的單調(diào)減區(qū)間,并指出f(x)的最大值及取到最大值時(shí)x的集合.

查看答案和解析>>

同步練習(xí)冊(cè)答案