已知橢圓.

(1)橢圓的短軸端點(diǎn)分別為(如圖),直線分別與橢圓交于兩點(diǎn),其中點(diǎn)滿足,且.
①證明直線軸交點(diǎn)的位置與無關(guān);
②若∆面積是∆面積的5倍,求的值;
(2)若圓:.是過點(diǎn)的兩條互相垂直的直線,其中交圓兩點(diǎn),交橢圓于另一點(diǎn).求面積取最大值時(shí)直線的方程.

(1)①交點(diǎn)為;②;(2) .

解析試題分析:(1)①本題方法很容易想到,主要考查計(jì)算推理能力,寫出直線的方程,然后把直線方程與橢圓方程聯(lián)立,求得點(diǎn)坐標(biāo),同理求得點(diǎn)坐標(biāo),從而得到直線的方程,令,求出,與無關(guān);②兩個(gè)三角形∆與∆有一對(duì)對(duì)頂角,故面積用公式,表示,那么面積比就為,即,這個(gè)比例式可以轉(zhuǎn)化為點(diǎn)的橫坐標(biāo)之間(或縱坐標(biāo))的關(guān)系式,從而求出;(2)仍采取基本方法,設(shè)的方程為,則的方程為,直線與圓相交于,弦的長(zhǎng)可用直角三角形法求,(弦心距,半徑,半個(gè)弦長(zhǎng)構(gòu)成一個(gè)直角三角形),的高為是直線與橢圓相交的弦長(zhǎng),用公式來求,再借助于基本不等式求出最大值及相應(yīng)的值,也即得出的方程.
試題解析:(1)①因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/7c/7/1tiyl3.png" style="vertical-align:middle;" />,M (m,),且
直線AM的斜率為k1=,直線BM斜率為k2=,
直線AM的方程為y= ,直線BM的方程為y=,
,

,

據(jù)已知,,
直線EF的斜率
直線EF的方程為 ,
令x=0,得 EF與y軸交點(diǎn)的位置與m無關(guān).
,,,
,,

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知拋物線C:,定點(diǎn)M(0,5),直線軸交于點(diǎn)F,O為原點(diǎn),若以O(shè)M為直徑的圓恰好過與拋物線C的交點(diǎn).
(1)求拋物線C的方程;
(2)過點(diǎn)M作直線交拋物線C于A,B兩點(diǎn),連AF,BF延長(zhǎng)交拋物線分別于,求證: 拋物線C分別過兩點(diǎn)的切線的交點(diǎn)Q在一條定直線上運(yùn)動(dòng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓C:的兩個(gè)焦點(diǎn)是F1(c,0),F(xiàn)2(c,0)(c>0)。
(I)若直線與橢圓C有公共點(diǎn),求的取值范圍;
(II)設(shè)E是(I)中直線與橢圓的一個(gè)公共點(diǎn),求|EF1|+|EF2|取得最小值時(shí),橢圓的方程;
(III)已知斜率為k(k≠0)的直線l與(II)中橢圓交于不同的兩點(diǎn)A,B,點(diǎn)Q滿足   ,其中N為橢圓的下頂點(diǎn),求直線l在y軸上截距的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(13分) 已知橢圓C的中心在原點(diǎn),離心率等于,它的一個(gè)短軸端點(diǎn)點(diǎn)恰好是拋物線 的焦點(diǎn)。

(1)求橢圓C的方程;
(2)已知P(2,3)、Q(2,-3)是橢圓上的兩點(diǎn),A,B是橢圓上位于直線PQ兩側(cè)的動(dòng)點(diǎn),
①若直線AB的斜率為,求四邊形APBQ面積的最大值;
②當(dāng)A、B運(yùn)動(dòng)時(shí),滿足,試問直線AB的斜率是否為定值,請(qǐng)說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)橢圓 的離心率為,點(diǎn),0),(0,)原點(diǎn)到直線的距離為。

(1) 求橢圓的方程;
(2) 設(shè)點(diǎn)為(,0),點(diǎn)在橢圓上(與、均不重合),點(diǎn)在直線上,若直線的方程為,且,試求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)直線與雙曲線交于A、B,且以AB為直徑的圓過原點(diǎn),求點(diǎn)的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓C的中心在坐標(biāo)原點(diǎn),短軸長(zhǎng)為4,且有一個(gè)焦點(diǎn)與拋物線的焦點(diǎn)重合.
(Ⅰ)求橢圓C的方程;
(Ⅱ)已知經(jīng)過定點(diǎn)M(2,0)且斜率不為0的直線交橢圓C于A、B兩點(diǎn),試問在x軸上是否另存在一個(gè)定點(diǎn)P使得始終平分?若存在,求出點(diǎn)坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖所示,已知圓為圓上一動(dòng)點(diǎn),點(diǎn)是線段的垂直平分線與直線的交點(diǎn).

(1)求點(diǎn)的軌跡曲線的方程;
(2)設(shè)點(diǎn)是曲線上任意一點(diǎn),寫出曲線在點(diǎn)處的切線的方程;(不要求證明)
(3)直線過切點(diǎn)與直線垂直,點(diǎn)關(guān)于直線的對(duì)稱點(diǎn)為,證明:直線恒過一定點(diǎn),并求定點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)橢圓C:過點(diǎn)(0,4),離心率為
(Ⅰ)求C的方程;(Ⅱ)求過點(diǎn)(3,0)且斜率為的直線被C所截線段的長(zhǎng)度.

查看答案和解析>>

同步練習(xí)冊(cè)答案