13.已知函數(shù)f(x)=-x2+ax+b,且f(4)=-3.
(1)若函數(shù)f(x)在區(qū)間[2,+∞)上遞減,求實(shí)數(shù)b的取值范圍;
(2)若函數(shù)f(x)的圖象關(guān)于直線x=1對(duì)稱,且關(guān)于x的方程f(x)=log2m在區(qū)間[-3,3]上有解,求m的最大值.

分析 (1)利用函數(shù)值以及對(duì)稱軸與單調(diào)區(qū)間的關(guān)系,列出不等式求解即可.
(2)利用對(duì)稱軸以及函數(shù)值,求出a,b,利用二次函數(shù)的閉區(qū)間上的最值,求解即可.

解答 解:(1)∵函數(shù)f(x)在區(qū)間[2,+∞)上遞減,∴$\frac{a}{2}≤2$,解得a≤4,
又f(4)=-3,∴b=-4a+13,
∵a≤4,∴b≥-3.
(2)∵$\left\{\begin{array}{l}\frac{a}{2}=1\\-16+4a+b=-3\end{array}\right.$解得$\left\{\begin{array}{l}a=2\\ b=5.\end{array}\right.$
∴f(x)=-x2+2x+5=-(x-1)2+6,x∈[-3,3],
∴f(x)min=f(-3)=-10,f(x)max=f(1)=6,
∴f(x)在[-3,3]上的值域?yàn)閇-10,6],
∴l(xiāng)og2m∈[-10,6],即m∈[2-10,26],
∴m的最大值為26=64.

點(diǎn)評(píng) 本題考查二次函數(shù)的簡(jiǎn)單性質(zhì)的應(yīng)用,對(duì)稱軸與單調(diào)區(qū)間的關(guān)系,考查轉(zhuǎn)化思想以及計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.A={x|x是小于9的質(zhì)數(shù)},B={x|x是小于9的正奇數(shù)},則A∩B的子集個(gè)數(shù)是( 。
A.32B.16C.8D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.已知函數(shù)$f(x)=\left\{\begin{array}{l}{(3-a)^x},x≤2\\{log_a}(x-1)+3,x>2\end{array}\right.$是定義域上的單調(diào)增函數(shù),則a的取值范圍是( 。
A.[3-$\sqrt{3}$,2)B.$(\sqrt{5}-1,\sqrt{3})$C.$(1,\sqrt{3})$D.$(1,3-\sqrt{3})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.若x>0,則函數(shù)${y_1}=-{a^{-x}}$與y2=logax(a>0,且a≠1)在同一坐標(biāo)系上的部分圖象只可能是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.已知函數(shù)f(x)是定義在R上的偶函數(shù),且在區(qū)間[0,+∞)上單調(diào)遞減,若f(log2a)+f(2log${\;}_{\frac{1}{4}}$a)≥2f(-1),則實(shí)數(shù)a的取值范圍是[$\frac{1}{2}$,2].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.設(shè)函數(shù)f(x),g(x)分別是R上的偶函數(shù)和奇函數(shù),則下列結(jié)論正確的是( 。
A.f(x)+g(x)是奇函數(shù)B.f(x)-g(x)是偶函數(shù)C.f(x)•g(x)是奇函數(shù)D.f(x)•g(x)是偶函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.已知等差數(shù)列{an}的前n項(xiàng)和為Sn,且S3=9,a2a4=21,數(shù)列{bn}滿足$\frac{b_1}{a_1}+\frac{b_2}{a_2}+…+\frac{b_n}{a_n}=1-\frac{1}{2^n}({n∈{N^*}})$,若${b_n}<\frac{1}{10}$,則n的最小值為( 。
A.6B.7C.8D.9

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.不等式|x|<2x-1的解集為{x|x>1}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.函數(shù)f(x)=-$\frac{2}{3}$x3+x2+4x+5的極大值為$\frac{35}{3}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案