(幾何證明選講選做題)
如圖,在Rt△ABC中,∠C=90°,E為AB上一點(diǎn),以BE為直徑作圓O剛好與AC相切于點(diǎn)D,若AB:BC=2:1,  CD=
3
,則圓O的半徑長(zhǎng)為
2
2
分析:連接DE,由直徑所對(duì)的圓周角為直角可得∠BDE=∠C=90°,又AC切圓O于點(diǎn)D,根據(jù)弦切角定理可得∠BED=∠BDC,又由AB:BC=2:1,∴∠A=30°,從而∠ABC=60°,于是∠EBD=∠CBD=
1
2
∠ABC=30°
,而CD=
3
,可得BD,進(jìn)而在Rt△BED中即可得出.
解答:解:連接DE,則∠BDE=∠C=90°,
由AB:BC=2:1,∴∠A=30°,從而∠ABC=60°,
又∵AC切圓O于點(diǎn)D,故∠BED=∠BDC,從而:∠EBD=∠CBD=
1
2
∠ABC=30°
,
CD=
3

BD=2CD=2
3
⇒BE=
BD
cos30°
=
2
3
3
2
=4

故圓O的半徑:r=
1
2
BE=2

故答案為2
點(diǎn)評(píng):熟練掌握?qǐng)A的性質(zhì)、弦切角定理、含30°角的直角三角形的性質(zhì)是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(幾何證明選講選做題)
自圓O外一點(diǎn)P引切線與圓切于點(diǎn)A,M為PA中點(diǎn),過M引割線交圓于B,C兩點(diǎn).
求證:∠MCP=∠MPB.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(幾何證明選講選做題)如圖,四邊形ABCD內(nèi)接于⊙O,AB為⊙O的直徑,直線MN切⊙O于D,∠MDA=60°,則∠BCD=
150°
150°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(考生注意:請(qǐng)?jiān)谙铝腥}中任選一題作答,如果多做,則按所做的第一題評(píng)分)
(1)(幾何證明選講選做題)如圖,點(diǎn)A,B,C是圓O上的點(diǎn),且BC=6,∠BAC=120°,則圓O的面積等于
12π
12π

(2)(不等式選講選做題)若存在實(shí)數(shù)x滿足|x-3|+|x-m|<5,則實(shí)數(shù)m的取值范圍為
(-2,8)
(-2,8)

(3)(極坐標(biāo)與參數(shù)方程選講選做題)設(shè)曲線C的參數(shù)方程為
x=2+3cosθ
y=-1+3sinθ
(θ為參數(shù)),直線l的方程為x-3y+2=0,則曲線C上到直線l距離為
7
10
10
的點(diǎn)的個(gè)數(shù)有
2
2
個(gè).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)(幾何證明選講選做題)
如圖,AD為圓O直徑,BC切圓O于點(diǎn)E,AB⊥BC,DC⊥BC,AB=4,DC=1,則AD等于
 

查看答案和解析>>

同步練習(xí)冊(cè)答案