14.已知圓M:x2+y2-2x+ay=0(a>0)被x軸和y軸截得的弦長(zhǎng)相等,則圓M被直線x+y=0截得的弦長(zhǎng)為( 。
A.4B.$\sqrt{2}$C.2$\sqrt{2}$D.2

分析 利用圓M:x2+y2-2x+ay=0(a>0)被x軸和y軸截得的弦長(zhǎng)相等,求出a=2,得出圓心在直線x+y=0上,即可求出圓M被直線x+y=0截得的弦長(zhǎng).

解答 解:由題意,圓心坐標(biāo)為(1,-$\frac{a}{2}$),
∵圓M:x2+y2-2x+ay=0(a>0)被x軸和y軸截得的弦長(zhǎng)相等,∴a=2,
∴圓心坐標(biāo)為(1,-1),圓的半徑為$\sqrt{2}$,
圓心在直線x+y=0上,∴圓M被直線x+y=0截得的弦長(zhǎng)為2$\sqrt{2}$,
故選C.

點(diǎn)評(píng) 本題考查直線與圓的位置關(guān)系,考查學(xué)生的計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知函數(shù)f(x)=1-$\frac{4}{2{a}^{x}+a}$(a>0且a≠1)是定義在R上的奇函數(shù).
(Ⅰ)求a的值;
(Ⅱ)若關(guān)于x的方程|f(x)•(2x+1)|=m有1個(gè)實(shí)根,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.如圖,在平面直角坐標(biāo)系xOy中,以O(shè)為角的頂點(diǎn),x軸正半軸為始邊的角α、β的終邊分別與單位圓交于點(diǎn)A,B,若點(diǎn)A的橫坐標(biāo)是$\frac{4}{5}$,點(diǎn)B的縱坐標(biāo)是$\frac{\sqrt{3}}{2}$.
(1)求cos(α-β)的值;
(2)求$\overrightarrow{OA}$與$\overrightarrow{OB}$夾角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知A,B為橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)和雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1的公共頂點(diǎn),P,Q分別為雙曲線和橢圓上不同于A,B的動(dòng)點(diǎn),且有$\overrightarrow{AP}$+$\overrightarrow{BP}$=λ($\overrightarrow{AQ}$+$\overrightarrow{BQ}$)(λ∈R),設(shè)AP,BP,AQ,BQ的斜率分別為k1,k2,k3,k4,且m=
(k1,k2),n=(k2,k1) 
(1)求證:m⊥n;
(2)求$\frac{{k}_{2}}{{k}_{1}}$+$\frac{{k}_{1}}{{k}_{2}}$+$\frac{{k}_{3}}{{k}_{4}}$+$\frac{{k}_{4}}{{k}_{3}}$的值;
(3)設(shè)F2′,F(xiàn)2分別為雙曲線和橢圓的右焦點(diǎn),且PF2′∥QF2,試判斷k12+k22+k32+k42是否為定值?若是,求出這個(gè)定值;若不是,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.如圖所示的多面體中,已知直角梯形ABCD和矩形CDEF所在的平面互相垂直,AD⊥DC,AB∥DC,AB=AD=DE=4,CD=8.
(1)證明:BD⊥平面BCF;
(2)設(shè)二面角E-BC-F的平面角為θ,求cosθ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.如圖,已知橢圓$\frac{x^2}{a^2}+{y^2}=1(a>1)$的長(zhǎng)軸長(zhǎng)是短軸長(zhǎng)的2倍,右焦點(diǎn)為F,點(diǎn)B,C分別是該橢圓的上、下頂點(diǎn),點(diǎn)P是直線l:y=-2上的一個(gè)動(dòng)點(diǎn)(與y軸交點(diǎn)除外),直線PC交橢圓于另一點(diǎn)M,記直線BM,BP的斜率分別為k1,k2
(1)當(dāng)直線PM過(guò)點(diǎn)F時(shí),求$\overrightarrow{PB}•\overrightarrow{PM}$的值;
(2)求|k1|+|k2|的最小值,并確定此時(shí)直線PM的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.已知向量$\overrightarrow{a}$=(x,2),$\overrightarrow$=(2,1),$\overrightarrow{c}$=(3,x),若$\overrightarrow{a}$∥$\overrightarrow$,則向量$\overrightarrow{a}$在向量$\overrightarrow{c}$方向上的投影為4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知$sinα=-\frac{{\sqrt{5}}}{5}$,α為第四象限角,求$\frac{cosα+sinα}{cosα-sinα}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.如圖,在平面直角坐標(biāo)系xOy中,以O(shè)為頂點(diǎn),x軸的非負(fù)半軸為始邊作兩個(gè)銳角α,β,它們的終邊分別與單位圓交于A,B兩點(diǎn).已知A,B的橫坐標(biāo)分別為$\frac{\sqrt{2}}{10},\frac{3}{5}$.
(Ⅰ)求$\frac{si{n}^{2}α+sinαcosα}{sinαcosα-6co{s}^{2}α}$的值;
(Ⅱ)求α+β的大。

查看答案和解析>>

同步練習(xí)冊(cè)答案