【題目】已知f(x)= .
(1)判斷函數(shù)f(x)的奇偶性并證明;
(2)證明f(x)是定義域內(nèi)的增函數(shù);
(3)解不等式f(1﹣m)+f(1﹣m2)>0.
【答案】
(1)解:(x)是奇函數(shù),理由如下:
∵f(x)的定義域?yàn)镽,且f(﹣x)=﹣ =﹣f(x),
∴f(x)是奇函數(shù)
(2)證明: f(x)= =1﹣
設(shè)x1<x2,則
f(x1)﹣f(x2)=1﹣ ﹣﹣(1﹣ )=
∵y=10x為增函數(shù),
∴當(dāng)x1<x2時(shí), <0,
∴f(x1)﹣f(x2)<0,即f(x1)<f(x2).
∴f(x)在定義域上為增函數(shù).
(3)解:不等式可化為f(1﹣m)>﹣f(1﹣m2)
由(1)知f(x)是奇函數(shù),
∴f(1﹣m)>f(m2﹣1)
由(2)知f(x)在定義域上為增函數(shù),
∴1﹣m>m2﹣1
解得﹣2<m<1
【解析】(1)利用函數(shù)的奇偶性的定義判斷證明f(﹣x)=﹣ =﹣f(x),即可判定函數(shù)的奇偶性;(2)利用函數(shù)單調(diào)性的定義,設(shè)x1<x2 , 利用作差法證明f(x1)<f(x2),即可得出函數(shù)的單調(diào)性;(3)根據(jù)函數(shù)的單調(diào)性與奇偶性,化抽象函數(shù)為具體函數(shù),即可解不等式.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)()(…是自然對(duì)數(shù)的底數(shù)).
(1)求單調(diào)區(qū)間;
(2)討論在區(qū)間內(nèi)零點(diǎn)的個(gè)數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】執(zhí)行如圖所示的程序框圖,若輸出的 ,則判斷框內(nèi)填入的條件可以是( )
A.k≥7
B.k>7
C.k≤8
D.k<8
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,底面為直角梯形, , 和均為等邊三角形,且平面平面,點(diǎn)為中點(diǎn).
(1)求證: 平面;
(2)若的面積為,求四棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】曲線的參數(shù)方程為 (為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn), 軸的正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為.
(1)寫出的直角坐標(biāo)方程,并且用 (為直線的傾斜角, 為參數(shù))的形式寫出直線的一個(gè)參數(shù)方程;
(2) 與是否相交,若相交求出兩交點(diǎn)的距離,若不相交,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知雙曲線E的中心在坐標(biāo)原點(diǎn),離心率為2,E的右焦點(diǎn)與拋物線C:y2=8x的焦點(diǎn)重合,A、B是C的準(zhǔn)線與E的兩個(gè)交點(diǎn),則|AB|=( )
A.3
B.6
C.9
D.12
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】有甲、乙兩個(gè)班級(jí)進(jìn)行數(shù)學(xué)考試,按照大于或等于90分為優(yōu)秀,90分以下為非優(yōu)秀統(tǒng)計(jì)成績(jī)后,得到如表的列聯(lián)表.
優(yōu)秀 | 非優(yōu)秀 | 總計(jì) | |
甲班 | 10 | ||
乙班 | 30 | ||
合計(jì) | 100 |
已知在全部100人中抽到隨機(jī)抽取1人為優(yōu)秀的概率為 .
(1)請(qǐng)完成如表的列聯(lián)表;
(2)根據(jù)列聯(lián)表的數(shù)據(jù),有多大的把握認(rèn)為“成績(jī)與班級(jí)有關(guān)系“?
(3)按分層抽樣的方法,從優(yōu)秀學(xué)生中抽出6名組成一個(gè)樣本,再?gòu)臉颖局谐槌?名學(xué)生,求恰好有1個(gè)學(xué)生在甲班的概率.
參考公式和數(shù)據(jù):K2= ,其中n=a+b+c+d.
下面的臨界值表供參考:
p(K2≥k0) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知{an}是遞增的等差數(shù)列,前n項(xiàng)和為Sn , a1=1,且a1 , a2 , S3成等比數(shù)列.
(1)求an及Sn;
(2)求數(shù)列{ }的前n項(xiàng)和Tn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)= x3﹣ (a∈R).
(1)若a=1,求函數(shù)f(x)在[0,2]上的最大值;
(2)若對(duì)任意x∈(0,+∞),有f(x)>0恒成立,求a的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com