【題目】已知函數(shù)f(x)=x+ ,g(x)=﹣x﹣ln(﹣x)其中a≠0,
(1)若x=1是函數(shù)f(x)的極值點(diǎn),求實(shí)數(shù)a的值及g(x)的單調(diào)區(qū)間;
(2)若對(duì)任意的x1∈[1,2],x2∈[﹣3,﹣2]使得f(x1)≥g(x2)恒成立,且﹣2<a<0,求實(shí)數(shù)a的取值范圍.
【答案】
(1)解:∵ ,其定義域?yàn)椋?,+∞),
∴ ;又x=1是函數(shù)h(x)的極值點(diǎn),
∴f'(1)=0,即1﹣a2=0,∴a=1或a=﹣1;
經(jīng)檢驗(yàn),a=1或a=﹣1時(shí),x=1是函數(shù)h(x)的極值點(diǎn),
∴a=1或a=﹣1
(2)解:假設(shè)存在實(shí)數(shù)a,對(duì)任意的x1∈[1,2],
x2∈[﹣3,﹣2]都有f(x1)≥g(x2)成立,
等價(jià)于對(duì)任意的x1∈[1,2]x2∈[﹣3,﹣2]時(shí),都有[f(x)]min≥[g(x)]min,
當(dāng)x∈[1,2]時(shí), .
∴函數(shù)g(x)在[﹣3,﹣2]上是減函數(shù).
∴[g(x)]min=g(2)=2+ln2.
∵ = ,且x∈[1,2],﹣2<a<0,
①當(dāng)﹣1<a<0且x∈[1,2]時(shí), ,
∴函數(shù) 在[1,2]上是增函數(shù).∴[f(x)]min=f(1)=1+a.
由1+a2≥2+ln2,得 ,
又∵﹣1<a<0,∴ 不合題意.
②當(dāng)﹣2<a≤﹣1時(shí),若1≤x<﹣a,則 ,
若﹣a<x≤2,則 ,
∴函數(shù) 在[1,﹣a)上是減函數(shù),在(﹣a,2]上是增函數(shù).
∴[f(x)]min=f(﹣a)=﹣2a﹣2a≥2+ln2,得 ,
∴ .
綜上,存在實(shí)數(shù)a的取值范圍為
【解析】(1)求出函數(shù)的導(dǎo)數(shù),計(jì)算f′(1)=0,求出a的值即可;(2)問(wèn)題等價(jià)于對(duì)任意的x1∈[1,2]x2∈[﹣3,﹣2]時(shí),都有[f(x)]min≥[g(x)]min , 根據(jù)函數(shù)的單調(diào)性求出a的范圍即可.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性的相關(guān)知識(shí),掌握一般的,函數(shù)的單調(diào)性與其導(dǎo)數(shù)的正負(fù)有如下關(guān)系: 在某個(gè)區(qū)間內(nèi),(1)如果,那么函數(shù)在這個(gè)區(qū)間單調(diào)遞增;(2)如果,那么函數(shù)在這個(gè)區(qū)間單調(diào)遞減,以及對(duì)函數(shù)的極值與導(dǎo)數(shù)的理解,了解求函數(shù)的極值的方法是:(1)如果在附近的左側(cè),右側(cè),那么是極大值(2)如果在附近的左側(cè),右側(cè),那么是極小值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù) 且函數(shù)y=f(x)圖象上點(diǎn)(1,f(1))處的切線斜率為0.
(1)試用含有a的式子表示b,并討論f(x)的單調(diào)性;
(2)對(duì)于函數(shù)圖象上的不同兩點(diǎn)A(x1 , y1),B(x2 , y2)如果在函數(shù)圖象上存在點(diǎn)M(x0 , y0),(x0∈(x1 , x2))使得點(diǎn)M處的切線l∥AB,則稱AB存在“跟隨切線”.特別地,當(dāng) 時(shí),又稱AB存在“中值跟隨切線”.試問(wèn):函數(shù)f(x)上是否存在兩點(diǎn)A,B使得它存在“中值跟隨切線”,若存在,求出A,B的坐標(biāo),若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)f(n)=(1+ )n﹣n,其中n為正整數(shù).
(1)求f(1),f(2),f(3)的值;
(2)猜想滿足不等式f(n)<0的正整數(shù)n的范圍,并用數(shù)學(xué)歸納法證明你的猜想.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】關(guān)于空間直角坐標(biāo)系O﹣xyz中的一點(diǎn)P(1,2,3),有下列說(shuō)法:
①點(diǎn)P到坐標(biāo)原點(diǎn)的距離為 ;
②OP的中點(diǎn)坐標(biāo)為( );
③點(diǎn)P關(guān)于x軸對(duì)稱的點(diǎn)的坐標(biāo)為(﹣1,﹣2,﹣3);
④點(diǎn)P關(guān)于坐標(biāo)原點(diǎn)對(duì)稱的點(diǎn)的坐標(biāo)為(1,2,﹣3);
⑤點(diǎn)P關(guān)于坐標(biāo)平面xOy對(duì)稱的點(diǎn)的坐標(biāo)為(1,2,﹣3).
其中正確的個(gè)數(shù)是( )
A.2
B.3
C.4
D.5
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知正項(xiàng)數(shù)列{an}的前n項(xiàng)和為Sn , 若{an}和 都是等差數(shù)列,且公差相等.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)令bn= ,cn=bnbn+1 , 求數(shù)列{cn}的前n項(xiàng)和Tn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)f (x)的導(dǎo)函數(shù)為f′(x),對(duì)任意x∈R都有f (x)>f′(x)成立,則( )
A.3f (ln2)<2 f (ln3)
B.3 f (ln2)=2 f (ln3)
C.3 f(ln2)>2 f (ln3)
D.3 f (ln2)與2 f (ln3)的大小不確定
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,ABCD與ADEF為平行四邊形,M,N,G分別是AB,AD,EF的中點(diǎn).求證:
(1)BE∥平面DMF;
(2)平面BDE∥平面MNG.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】現(xiàn)有4個(gè)人去參加娛樂(lè)活動(dòng),該活動(dòng)有甲、乙兩個(gè)游戲可供參加者選擇.為增加趣味性,約定:每個(gè)人通過(guò)擲一枚質(zhì)地均勻的骰子決定自己去參加哪個(gè)游戲,擲出點(diǎn)數(shù)為1或2的人去參加甲游戲,擲出點(diǎn)數(shù)大于2的人去參加乙游戲.
(1)求這4個(gè)人中恰有2人去參加甲游戲的概率;
(2)求這4個(gè)人中去參加甲游戲的人數(shù)大于去參加乙游戲的人數(shù)的概率;
(3)用X,Y分別表示這4個(gè)人中去參加甲、乙游戲的人數(shù),記ξ=|X﹣Y|,求隨機(jī)變量ξ的分布列與數(shù)學(xué)期望Eξ.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=ax2﹣x+2a﹣1(a>0).
(1)若f(x)在區(qū)間[1,2]為單調(diào)增函數(shù),求a的取值范圍;
(2)設(shè)函數(shù)f(x)在區(qū)間[1,2]上的最小值為g(a),求g(a)的表達(dá)式;
(3)設(shè)函數(shù) ,若對(duì)任意x1 , x2∈[1,2],不等式f(x1)≥h(x2)恒成立,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com