(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)在數(shù)列{bn}中,對(duì)任意正整數(shù)n,bn·=1都成立,設(shè)Sn為數(shù)列{bn}的前n項(xiàng)和,比較Sn與的大;
(Ⅲ)在點(diǎn)列An(2n,)(n∈N*)中,是否存在三個(gè)不同點(diǎn)Ak、Al、Am,使Ak、Al、Am在一條直線(xiàn)上?若存在,寫(xiě)出一組在一條直線(xiàn)上的三個(gè)點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
解:(Ⅰ)由,得.
∴,即{}是以為首項(xiàng),4為公差的等差數(shù)列.
有=1+(n-1)×4=4n-3
∴an>0, ∴
(Ⅱ)∵
∴=bn(4n2-1)=1,
∴
∴Sn=b1+b2+…+bn
∴
(Ⅲ)點(diǎn)列An(2n,)(n∈N*)中不可能有共線(xiàn)的三個(gè)點(diǎn).
根據(jù)(Ⅰ),可得An(2n,) (n∈N*),
令x=2n,y=,則y=.(x≥2)
點(diǎn)(x,y)在曲線(xiàn)x2-y2=1(x≥2,y≥)上,
所以,An(2n,)在曲線(xiàn)x2-y2=1(x≥2,y≥)上,而直線(xiàn)方程與x2-y2=1聯(lián)立組成的方程組最多有兩組不同的解,所以直線(xiàn)與x2-y2=1最多有兩個(gè)交點(diǎn).
所以,點(diǎn)列An(2n,)(n∈N*)中不可能有共線(xiàn)的三個(gè)點(diǎn).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
|
1 |
π |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
|
A、(
| ||||
B、(
| ||||
C、(
| ||||
D、[
|
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
2x-2-x | 2x+2-x |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
x-1 | x+a |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com