設(shè)函數(shù)f(x)=ex(sinx-1)
(Ⅰ)求函數(shù)f(x)的單調(diào)增區(qū)間;
(Ⅱ)當(dāng)x∈[-
3
4
π,
3
4
π]時(shí),求函數(shù)的最大值和最小值.
考點(diǎn):利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,利用導(dǎo)數(shù)求閉區(qū)間上函數(shù)的最值
專題:導(dǎo)數(shù)的綜合應(yīng)用
分析:(Ⅰ)先求出f′(x)=ex(sinx+cosx-1),令f′(x)>0,解不等式,從而求出函數(shù)的遞增區(qū)間;
(Ⅱ)由(Ⅰ)得f(x)在(0,
π
2
)(k∈Z)遞增;令f′(x)<0,求出f(x)在[-
3
4
π,0),(
π
2
3
4
π]遞減,進(jìn)而求出函數(shù)的最值.
解答: 解:(Ⅰ)∵f′(x)=ex(sinx+cosx-1),
令f′(x)>0,解得:2kπ<x<2kπ+
π
2
,(k∈Z),
∴f(x)在(2kπ,2kπ+
π
2
)(k∈Z)遞增;
(Ⅱ):由(Ⅰ)得:
f′(x)=ex(sinx+cosx-1),
f(x)在(0,
π
2
)(k∈Z)遞增;
令f′(x)<0,解得:-
3
4
π≤x<0,或
π
2
<x≤
3
4
π,
∴f(x)在[-
3
4
π,0),(
π
2
,
3
4
π]遞減,
又∵f(-
3
4
π)=(-
2
2
-)e-
3
4
π
<0,
f(
π
2
)=0,f(0)=-1,
f(
3
4
π)=(
2
2
-1)e
3
4
π
<-1,
∴f(x)max=0,f(x)min=(
2
2
-1)e
3
4
π
點(diǎn)評(píng):本題考查了函數(shù)的單調(diào)性,函數(shù)的最值問題,考查導(dǎo)數(shù)的應(yīng)用,三角函數(shù)的性質(zhì),是一道綜合題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=
x
ex-x
的一段圖象為( 。
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

閱讀如圖所示的程序框圖,若輸入的x=log (a2+2)
1
2
,則輸出的值為(  )
A、1B、0
C、1或0D、與a的大小有關(guān)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

昌銅高速于2012年10月28日全線通車,它縮短了南昌、奉新、靖安、宜豐和銅鼓之間的時(shí)空距離,極大的提高了宜春市公路網(wǎng)的等級(jí)結(jié)構(gòu).昌銅高速全長約180km,假設(shè)某汽車從銅鼓進(jìn)入高速公路后,以不低于60km/小時(shí)且不高于120km/小時(shí)的速度勻速行駛到南昌,已知汽車每小時(shí)的運(yùn)輸成本(以元為單位)由固定部分和可變部分組成,固定部分為200元,可變部分與速度的平方成正比,當(dāng)汽車以最快速度行駛時(shí),每小時(shí)的運(yùn)輸成本為488元,若使汽車的全程運(yùn)輸成本最低,其速度為( 。﹌m/小時(shí).
A、80B、90
C、100D、110

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a、b是互不相等的正數(shù),則下列不等式中恒成立的個(gè)數(shù)是(  )
①(a+3)2>2a2+6a+11
a+3
-
a+1
a+2
-
a

③a2+
1
a2
≥a+
1
a
A、0B、1C、2D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知z為虛數(shù),且|
.
z
-3|=|
.
z
-3i|,u=z-1+
9
z-1
為實(shí)數(shù),求z.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an}的公差為d,前n項(xiàng)和為Sn,等比數(shù)列{bn}的前n項(xiàng)和為Tn,且{an}、{bn}滿足條件:S4=4a3-2,Tn=2bn-2.
(1)求公差d的值;
(2)若對(duì)任意的n∈∈N*,都有Sn≥S5成立,求a1的取直范圍;
(3)若a1=1,令cn=anbn,求數(shù)列{cn}的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)的兩個(gè)頂點(diǎn)為A1(-a,0),A2(a,0),與y軸平行的直線交橢圓于P1、P2,求A1P1與A2P2交點(diǎn)的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在四棱錐P-ABCD中,底面ABCD是平行四邊形,BD=4,PD⊥平面ABCD,平面PBC⊥平面PBD,二面角P-BC-D為60°.
(1)求證:BC⊥BD;
(2)求點(diǎn)A到平面PBC的距離.

查看答案和解析>>

同步練習(xí)冊(cè)答案