已知函數(shù)
(1)若的解集是,求的值;
(2)若,解關(guān)于的不等式.

(1);(2)當(dāng)時(shí),不等式的解集為;當(dāng)時(shí),不等式的解集為;當(dāng)時(shí),不等式的解集為.

解析試題分析:(1)的解集是,則是方程的兩根,即則是方程的兩根,由韋達(dá)定理知,得;;(2)當(dāng)時(shí),,因?yàn)椴恢?img src="http://thumb.zyjl.cn/pic5/tikupic/be/e/jpnc21.png" style="vertical-align:middle;" />和1的大小,需要討論,討論如下:當(dāng)時(shí),不等式的解集為;當(dāng)時(shí),不等式的解集為;當(dāng)時(shí),不等式的解集為.
試題解析:(1)由題意,是方程的兩根,故,解得;(2)若,則,當(dāng)時(shí),不等式的解集為;當(dāng)時(shí),不等式的解集為;當(dāng)時(shí),不等式的解集為.
考點(diǎn):1.不等式與方程的應(yīng)用;2.含參一元二次不等式的求解.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)
(1)如果存在零點(diǎn),求的取值范圍
(2)是否存在常數(shù),使為奇函數(shù)?如果存在,求的值,如果不存在,說(shuō)明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)函數(shù),其中a為正實(shí)數(shù).
(l)若x=0是函數(shù)的極值點(diǎn),討論函數(shù)的單調(diào)性;
(2)若上無(wú)最小值,且上是單調(diào)增函數(shù),求a的取值范
圍;并由此判斷曲線與曲線交點(diǎn)個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)
(1)若上恒成立,求m取值范圍;
(2)證明:).
(注:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù).
(Ⅰ)求的單調(diào)區(qū)間;
(Ⅱ)若曲線有三個(gè)不同的交點(diǎn),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知,其中,,
(Ⅰ)若上的減函數(shù),求應(yīng)滿足的關(guān)系;
(Ⅱ)解不等式。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知
(1)求函數(shù)上的最小值;
(2)對(duì)一切恒成立,求實(shí)數(shù)的取值范圍;
(3)證明:對(duì)一切,都有成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)
(1)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;
(2)當(dāng)函數(shù)自變量的取值區(qū)間與對(duì)應(yīng)函數(shù)值的取值區(qū)間相同時(shí),這樣的區(qū)間稱為函數(shù)的保值區(qū)間。設(shè),試問(wèn)函數(shù)上是否存在保值區(qū)間?若存在,請(qǐng)求出一個(gè)保值區(qū)間;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)
(1)若函數(shù)在點(diǎn)處的切線與圓相切,求的值;
(2)當(dāng)時(shí),函數(shù)的圖像恒在坐標(biāo)軸軸的上方,試求出的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案