5.若偶函數(shù)f(x)在區(qū)間[-3,-1]上有最大值6,則f(x)在區(qū)間[1,3]上有(  )
A.最大值6B.最小值6C.最大值-6D.最小值-6

分析 偶函數(shù)f(x)的圖象關(guān)于y軸對(duì)稱,即在對(duì)稱區(qū)間上單調(diào)性相反,最值相同,進(jìn)而得到答案.

解答 解:偶函數(shù)f(x)的圖象關(guān)于y軸對(duì)稱,
若函數(shù)f(x)在區(qū)間[-3,-1]上有最大值6,
則f(x)在區(qū)間[1,3]上有最大值6,
故選:A

點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是函數(shù)奇偶性的性質(zhì),正確理解并熟練掌握函數(shù)奇偶性的性質(zhì)是解答的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.已知角$α∈(\frac{π}{2},π)$,且tanα=-$\frac{{\sqrt{3}}}{3}$,則cosα的值為( 。
A.$-\frac{{\sqrt{3}}}{3}$B.$\frac{{\sqrt{3}}}{3}$C.$-\frac{{\sqrt{3}}}{2}$D.$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.若$\frac{a}$=$\frac{c}k2qh1ta$,則下列各式一定成立的是( 。
A.$\frac{a+b}$=$\frac{c+d}{c}$B.$\frac{a+c}{c}$=$\frac{b+d}bdxbcvr$C.$\frac{a-c}{c}$=$\frac{b-d}$D.$\frac{a-c}{a}$=$\frac{b-d}yjv1ma6$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.函數(shù)$f(x)=\left\{\begin{array}{l}{x^2}-2x-3,x≤0\\-2+lnx,x>0\end{array}\right.$的零點(diǎn)為-1或e2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知函數(shù)f(x)=xsinx+cosx
(I)若f(x)>k對(duì)任意的x∈(0,π)恒成立,求實(shí)數(shù)k的取值范圍;
(II)判斷f(x)在區(qū)間(2,3)上的零點(diǎn)個(gè)數(shù),并證明你的結(jié)論.(參考數(shù)據(jù):$\sqrt{2}$≈1.4,$\sqrt{6}$≈2.4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.已知函數(shù)f(2x+1)的定義域?yàn)閇-3,3],則函數(shù)f(x-1)的定義域?yàn)閇-4,8].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.極坐標(biāo)方程ρ2cos2θ=1為所表示的曲線的離心率是$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知定義在實(shí)數(shù)集R上的函數(shù)f(x)=ax3+bx2+cx+d,其中a,b,c,d是實(shí)數(shù).若函數(shù)f(x)在區(qū)間(-∞,-1)和(3,+∞)上是增函數(shù),在區(qū)間(-1,3)上是減函數(shù),并且f(0)=-7,f′(0)=-18,求函數(shù)f(x)的表達(dá)式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.已知f(x)是定義在R上的偶函數(shù),它在[0,+∞)上遞增,那么一定有(  )
A.$f(\frac{3}{4})<f({a^2}-a+1)$B.$f(\frac{3}{4})≤f({a^2}-a+1)$C.$f(\frac{3}{4})>f({a^2}-a+1)$D.$f(\frac{3}{4})≥f({a^2}-a+1)$

查看答案和解析>>

同步練習(xí)冊(cè)答案